Fusion hindrance and SHE

D. Boilley GANIL and Univ. Caen

- CEA, Saclay:
 - B. Giraud

GANIL, Caen:

On the prediction for the SHE production

- Anthony Marchix
- Yoann Lallouet

Ankara university:

Bülent Yilmaz

RCNP, Osaka:
 (大阪大学核物理研究センター)

◆ Yasuhisa Abe (阿部恭久)

Huzhou Teachers' College: (湖州师范学院)

◆ Caiwan Shen (沈彩万)

Questions for theoreticians

Can we guide the experiments ?

What is the shell correction energy ?

Difficulties

Models cannot be extrapolated from lighter systems

+ Fusion hindrance

Extremely low cross sections

+ Few data with few information

Kazimierz Dolny, Sept

Direct evidence for long fission times

M. Morjean et al, Eur. Phys. J. D45 (2007) 27 & PRL101, 072701 (2008) Mesurements at GANIL by crystal blocking techniques

Z = 124 A = 312

At least 12 % of the capture events with a life time longer than 10^{-18} s

Z = 120 A = 296

At least 10 % of the capture events with a life time longer than 10^{-18} s

Z = 114 A = 282

Very low statistic or no events with a life time longer than 10⁻¹⁸ s

 $\Gamma_{f} \approx 10^{-21} s$

Kazimierz Dolny, Sept. 2001-

KEWPIE 2

Γ_{n}

On the prediction for the SHE production

 $\frac{dP_i}{dt} = \Gamma_{i-1}^n P_{i-1}(t) - (\Gamma_i^f + \Gamma_i^n) P_i(t)$

Main ingredients

- Formalism:
 - Weisskopf or Hauser-Feshbach
 - Bohr-Wheeler
- Level density:
 - Bohr-Mottelson with angular dependence
- Level density parameter:
 - Töke-Swiatecki
 - Suppression of shell energy corrections according to lgnatyuk
- Collective enhancement included

A. Marchix, PhD thesis, Univ. Caen (2007)

Simplified model

Fission vs neutron evaporation

Bn=6 MeV & Bf

chain

mean:

 $\bullet B_f \approx B_n$

constant along the

Long fission times

without gamma emission - with gamma emission **Average fission time (s)** 1E-15 1E-16 1E-17 1E-18 1E-19 1E-20 1E-16 1E-19 8 **Pre-scission neutrons** n neutron multiplicity 7 9 2 4 E*=80 MeV 3

Long fission time events occur after evaporation of several neutrons

♦ We cannot extract Bf of each isotope

D.B. et al, IJMP E17 (2008) 1681-1693

0

0

0,5

2

1,5

Bf/Bn

- Experimental results for Z=120 and 124 cannot be reproduced with Möller's table
- Very large △E_{shell} for the first isotopes of the evaporation chain
 - Potential structure effects ?

On the prediction for the SHE production

Structure effect 2

Residue cross sections

On the prediction for the SHE production

Kazimierz Dolny, Sept. 20011

KEWPIE 2

Specificity

- It is not a Monte-Carlo code to calculate very low probabilities
- It is based on a discretisation in bins of the energy spectra:

On the prediction for the SHE production

Kazimierz Dolny, Sept. 2001.

Residue cross sections

Important parameters of KEWPIE2

Shell correction energy -> correction factor

$$\Delta E_{shell} = f \cdot \Delta E_{Moller}$$

Damping Energy E_d

$$a_{ground} = a.(1 + \frac{(1 - e^{-E^*/E_d}) \Delta E_{shell}}{E^*})$$

• Originally, Ed=18.5 MeV

$$B_f \approx e^{-E^*/E_d} \Delta E_{shell}$$

Reduced friction

β=2.10²¹s⁻¹

Kazimierz Dolny

■ Fitting the residue cross sections gives very strong constraint on ∆E_{shell}...

Precision of 1 MeV

On the prediction for the SHE production

... if we know the fusion cross section

On the prediction for the SHE production

Experimental fusion hindrance

K.-H. Schmidt & W. Morawek Rep. Prog. Phys. 54 (1991) 949

Position of the inner barrier

Neck dynamics

Fusion hindrance for symmetric reactions

On the prediction for the SHE production

Kazimierz Dolny, Sept. 2001.

Fusion hindrance for symmetric reactions

On the prediction for the SHE production

Kazimierz Dolny, Sept. 2001

Influence of the shift

On the prediction for the SHE production

Ζ

Kazimierz Dolny, Sept. 20011

Borderline between hindered and non hindered reactions

On the prediction for the SHE production

Adiabatic approximation

- Fast degree of freedom (neck) vs slow degree of freedom (r)
- Tensor coupling
- Shift of the initial condition in r
- Larger hindrance due to dynamical coupling!

Kazimierz Dolny, Sept. 200

 τ

Exact solution for a saddle made with 2 parabolas

Advertisement

http://www.ensarfp7.eu/workshops/fushe2012/

On the prediction for the SHE production