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Low-lying states of exotic nuclei

Low-lying states of exotic nuclei

Radioactive nuclear beam facilities and gamma ray detectors have in

recent years allowed one to study spectroscopy of the low-lying excited

states for exotic nuclei. It provides rich information about the nuclear

structure, including

1 evolution of shell structure and collectivity

2 nuclear shape and shape phase transition

R. F. Casten, Nature Physics, 811 (2006); P. Cejnar, Rev. Mod. Phys. 82, 2155 (2010)

3 decoupling of neutrons and protons (in 16C)

N. Imai et al., Phys. Rev. Lett. 92, 062501 (2004)
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Beyond the self-consistent mean-field theory

Beyond the SC mean-field approach for nuclear low-lying states

In the past decade, several beyond SC mean-field models have been developed
that perform the restoration of symmetries broken by the static nuclear mean
field, and take into account fluctuations around the mean-field minimum.

Restricted to axial shape

PNP+1DAMP+GCM (HF with
Skyrme force)
A. Valor, P.-H. Heenen, and P. Bonche,

NPA671, 145(2000)

PNP+1DAMP+GCM (HFB with
Gogny force)
R. Rodriguez-Guzman, J. L. Egido, and L. M.

Robledo, NPA709, 201(2002)

PNP+1DAMP+GCM (RMF with
point-coupling force)
T. Niksic, D. Vretenar, and P. Ring, PRC73,

034308 (2006)

Applications for nuclear low-lying states

low-spin normal-deformed and
super-deformed collective states
Bender, Flocard & Heenen, PRC68, 044321

(2003)

shape coexistence in Kr, Pb isotopes
Rodriguez-Guzman, Egido & Robledo, PRC
69, 054319 (2004);

Bender, Bonche & Heenen, PRC 74, 024312

(2006)

shell closures at N=32 or 34?
Rodriguez & Egido, PRL 99, 062501 (2007)

shape transition in Nd isotopes
Niksic, Vretenar, Lalazissis & Ring, PRL99,
092502 (2007);

Rodriguez & Egido, PLB 663, 49 (2008)
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Beyond the self-consistent mean-field theory

Beyond the self-consistent mean-field theory: Recent progress

Recently, the 1DAMP+GCM framework has been extended to the
3DAMP+GCM case, which makes it possible to study the nuclear low-lying
states with the consideration of effects from

1 restoration of rotation symmetry in full 3D Euler space

2 shape fluctuation in full β-γ plane

Non-relativistic versions

PNP+3DAMP+GCM (HFB with
Skyrme force)
M. Bender and P.-H. Heenen, PRC78, 024309

(2008).

PNP+3DAMP+GCM (HFB with
Gogny force)
T. R. Rodriguez and J. L. Egido, Phys. Rev.

C 81, 064323 (2010)

Only illustrative calculations have been
carried out in non-relativistic frameworks !

Our relativistic 3DAMP+GCM model

starting from the RMF+BCS with
point-coupling force
Yao, Meng, Ring & Pena Arteaga, PRC79, 044312
(2009);

Yao, Meng, Ring & Vretenar, PRC81, 044311

(2010)

1 framework of our relativistic
3DAMP+GCM model

2 its applications to the analysis of
nuclear low-lying states in some
interesting isotopes.
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Intrinsic states from the relativistic point-coupling calculations

The relativistic 3DAMP+GCM model

1. The relativistic point-coupling model+BCS calculations with constraints
on quadrupole moments by minimizing the energy functional

E ′[ρi , j
µ
i ] = E [ρi , j

µ
i ]−

∑
µ=0,2

Cµ

2
(Q̂2µ − q2µ)2 (1)

generate a large set of highly correlated intrinsic deformed states |Φ(q)〉.
The pairing correlations, for open-shell nuclei, are taken into account by
augmenting the following pairing energy functional,

E [κ] = −
∑

τ

∫
dr

Vτ

4
κ∗τ (r)κτ (r) (2)

with separately adjustable strengths Vp/n for protons and neutrons.

PC-F1: Burvenich, Madland, Maruhn & Reinhard, PRC65, 044308 (2002).

DD-PC1: Niksic, Vretenar & Ring, PRC78, 034318 (2008).

PC-PK1: Zhao, Li, Yao & Meng, arXiv:1002.1789v1 [nucl-th].
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Configuration of angular momentum projected triaxial states

The relativistic 3DAMP+GCM model

2. The nuclear wavefunction with good angular momentum and shape
fluctuation is obtained by projecting the intrinsic states |Φ(β, γ)〉 onto
good angular momentum (K-mixing) and performing GCM calculations
(configuration mixing),

|ΨJM
α 〉 =

∫
dβdγ

∑
K≥0

f JK
α (β, γ)

1

(1 + δK0)
[P̂J

MK + (−1)J P̂J
M−K ]︸ ︷︷ ︸ |Φ(β, γ)〉

(3)

The weight functions f JK
α are determined from the solution of

Hill-Wheeler-Griffin (HWG) integral equation: q ≡ (β, γ)∫
dq′

∑
K ′≥0

[
H J

KK ′(q, q′)− E J
αN J

KK ′(q, q′)
]
f JK ′
α (q′) = 0, (4)

where H and N are the angular-momentum projected GCM kernel
matrices of the Hamiltonian and the Norm, respectively.
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Electromagnetic moments and transition strengths

The relativistic 3DAMP+GCM model

3. The electromagnetic moments and transition strengths are evaluated with

the nuclear wavefunction.

E0 and E2 transition strengths

g -factor: µ(Jπ)/J

Spectroscopic quadrupole moment: Qspec(J)

· · ·

B(σλ; Ji , αi → Jf , αf ) =
e2

2Ji + 1

∑
Mi µMf

∣∣∣〈Jf ,Mf , αf |M̂(σλµ)|Ji ,Mi , αi 〉
∣∣∣2 ,(5)

The matrix elements are calculated in the full configuration space. There is no

need for effective charges.
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A well deformed nucleus Dysprosium

Low-lying states in 166Dysprosium: AMP

0 . 1 0 . 2 0 . 3 0 . 4 0 . 5 0 . 6 0 . 7 0 . 8
- 1 3 5 0

- 1 3 4 8
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 J = 0
 J = 2
 J = 4
 J = 6
 J = 8
 J = 1 0
 M F

1 6 6 D y

A pronounced minimum with
β = 0.350 in the mean-field potential
energy surface.

After angular momentum projection,
one obtains the projected PES with
J = 0. · · · , 10.

The projected PES with J = 0 has a
minimum with β = 0.375.

The energy gained from AMP is
about 3 MeV.
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A well deformed nucleus Dysprosium

Low-lying states in 166Dysprosium: comparison with a rigid rotor

Figure: The excitation energies [normalized to
Ex (2

+
1 )] and B(E2) values of low-lying states as

functions of angular momentum.

Good agreement has been found
between the rigid rotor model and
microscopic projected GCM
calculations, both of which reproduce
the data quite well.
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Magnesium isotopes

Low-lying states in magnesium isotopes: correlation energies

Total dynamical correlation energies ECorr consists of two parts:

1 energy correction from the restoration of rotational symmetry

∆EJ=0 = EJ=0(β0)− EMF(βm), (6)

2 the energy correlation from configuration mixing

∆EGCM = E(0+
1 )− EJ=0(β0). (7)

Figure: Total ground-state dynamical correlation
energies of Mg isotopes, as a function of the
number of neutrons.

ECorr shows a strong dependence on
shape and shell structure.

large for deformed mid-shell nuclei,
with a maximum of ∼ 4 MeV at
N = 14, and is drastically reduced
(∼ 1 MeV) for the two isotopes with
the neutron magic numbers N = 8
and N = 20.

The rotational energy correction
∆EJ=0 constitutes the dominant part.
Non-Rel. Cal.+GOA: Bender, Bertsch &

Heenen, PRC73, 034322 (2006).
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Magnesium isotopes

Low-lying states in magnesium isotopes: E2 transition strengths

Figure: B(E2; 0+
1 → 2+

1 ) (e2fm4) values in
20−40Mg, calculated using the 1DAMP+GCM
model with the relativistic density functional
PC-F1, are compared to available data and the
results of the 1DAMP+GCM calculation based on
the non-relativistic HFB framework with the Gogny
force [Rodriguez-Guzman, Egido & Robledo, NPA709,

201 (2002)].

Our calculations (PC-F1) yield
results in reasonable agreement with
data except, of course, at and in the
neighborhood of the neutron number
N = 20.

A better adjustment of pairing
strength parameters and eventually
the inclusion of triaxiality, could
improve the results for 32Mg, giving
B(E2; 0+

1 → 2+
1 ) = 330.1 e2fm4,

much closer to the available data.
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Magnesium isotopes

Effect of triaxiality in E0 transition of 30Mg

The projected PES (J = 0)
and Probability distribution
of 0+

1 state in β-γ plane.
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Carbon isotopes

Excitation energies and BE2 values in Carbon isotopes
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Figure: Excitation energies of 2+
1 states

Ex (2
+
1 ) (MeV) and the B(E2) values

(e2fm4) for even-even carbon isotopes.

The experiment B(E2) values are compared
with the prediction by the empirical relation:
S. Raman et al., PRC37, 805 (1988)

B(E2 : 0+
1 → 2+

1 )sys.

= 6.47Z 2A−0.69E−1
x (2+

1 ). (8)

The systematics of both Ex(2
+
1 ) and

B(E2 : 2+
1 → 0+

1 ) are reproduced quite well

The quenched B(E2) values, combined with
the very low Ex(2

+
1 ) indicate that the

decoupled structure of neutron and proton
exist in 16−20C.

The large difference between neutron and
proton deformations in 16−20C is due to the
special mp-2h configurations
ν(1d5/2)

m ⊗ π(1p3/2)
−2, m = 2, 4, 6.

What about 22C? Neutron halo with ν(2s1/2)
2?

K. Tanaka et al., PRL 104, 062701 (2010)
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Summary

The relativistic version of 3DAMP+GCM approach and its applications

The relativistic 3DAMP+GCM model has been developed that uses the
generator coordinate method (GCM) to perform configuration mixing of
three-dimensional angular-momentum projected (3DAMP) relativistic
mean-field wave functions, generated by constrained self-consistent
calculations for triaxial nuclear shapes.

The relativistic 3DAMP+GCM model has been tested and compared with
the rigid rotor model for the low-spin states in well deformed nucleus 166Dy.

The low-lying states of magnesium isotopes and carbon isotopes have
been calculated. The spectroscopic properties, including excitation energy,
BE0, BE2 transition strengthes and g -factor, are studied. The effects of
triaxiality and pair correlation are discussed.

Triaxiality has been found to be important in 30Mg.

The quenched B(E2) values, combined with the very low Ex(2
+
1 ) indicate

that the decoupled structure of neutron and proton exist in 16−20C.
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Perspective

What can be done next?

Using a separable pairing force in the pairing channel.
Tian, Ma & Ring, PLB676, 44 (2009).

Comparing with the same energy functional based Bohr Hamiltonian
calculation to examine the Gaussian Overlap Approximation.
Niksic, Li, Vretenar, Prochniak, Meng & Meng, PRC79, 034303 (2009)

Including two quasiparticle configurations using the idea of projected shell
model.
Hara & Sun, Int. J. Mod. Phys. E 4, 637-785 (1995)

Augmenting the particle number projection and regularization
Lacroix, Duguet & Bender, PRC79, 044318 (2009).

Bender, Duguet & Lacroix, PRC79, 044319 (2009).

· · ·
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Numerical details

Imposed symmetries: parity, D2 symmetry, and time reversal symmetry.

Basis expansion method: a set of three-dimensional isotropic harmonic
oscillator basis functions in Cartesian coordinates.

Modified Broyden’s method for accelerating convergence in
self-consistent calculations A. Baran et al., PRC 78, 014318 (2008)

The Gaussian-Legendre quadrature is used for integrals over the Euler
angles φ, θ and ψ in the calculation of the norm and hamiltonian kernels.
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Low-lying states in magnesium isotopes: g-factor

g-factor: g(Jπ
α) = µ(Jπ

α)/J, where the magnetic moment µ(Jπ
α) of excited

state Jπ
α can be calculated with the angular momentum projected wave

function,

µ(Jπ
α) = 〈J,M = J, α|µ̂10|J,M = J, α〉 (9)

The magnetic moment vector µ̂ is related to
effective electromagnetic current operator,

µ̂k =
1

2

∫
d3r [r × j]k , k = x , y , z (10)

that is determined by the effective EM current,

ĵ = eψ†αψ +
κ

2M
∇× [ψ†βΣψ], (11)

where κ is the free anomalous gyromagnetic
ratio of the nucleon: κp = 1.793 and
κn = −1.913.
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0 . 6
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g f
ac

tor
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Figure: The g-factor as a function of angular
momentum in 24Mg.
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effective electromagnetic current operator,

µ̂k =
1

2

∫
d3r [r × j]k , k = x , y , z (10)

that is determined by the effective EM current,

ĵ = eψ†αψ +
κ

2M
∇× [ψ†βΣψ], (11)

where κ is the free anomalous gyromagnetic
ratio of the nucleon: κp = 1.793 and
κn = −1.913.
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Figure: The g-factor as a function of angular
momentum in 24Mg.
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Figure: Self-consistent RMF+BCS mean-field
(left panel), and angular-momentum projected
0+ potential energy curves (right panel) of
even-even magnesium isotopes, as functions
of the axial deformation parameter β.
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∆EJ=0 = EJ=0(β0)− EMF(βm), (12)

where βm and β0 denote the axial
deformation parameters at the minima of
the mean-field and the (Jπ = 0+)
angular-momentum projected PECs,
respectively
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probability

The solution of HWG equation determines both the energies E J
α and the

amplitudes f JK
α (q) of collective states with good angular momentum |ΨJM

α 〉

f JK
α (q) =

∑
k

g Jα
k√
nJ

k

uJ
k (i). (13)

The weight functions f JK
α (q) are not orthogonal and cannot be interpreted as

collective wave functions for the deformation variables. The collective wave
functions g J

α(i) are calculated from the norm overlap eigenstates:

g J
α(i) =

∑
k

g Jα
k uJ

k (i), (14)

The wave functions g J
α(i) are orthonormal and, therefore, |g J

α(i)|2 can be
interpreted as a probability amplitude.
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