Nuclear-Structure Related Issues of Double Beta Decays

Jouni Suhonen

Department of Physics University of Jyväskylä

17th Nuclear Physics Workshop "Marie and Pierre Curie", Kazimierz Dolny, Poland, 22-26 September, 2010

Contents:

- Intro: $0\nu\beta\beta$ decay
- Resonant 0ν ECEC Decays

INTRO: Neutrino Properties from Experiments

Neutrino Properties from Oscillation Experiments:

From solar, atmospheric, accelerator and reactor-neutrino data (SuperKamiokande, SNO, KamLAND, etc.):

- Squared mass differences Δm^2 of neutrinos
- Matrix elements of the neutrino mixing matrix ⇔ flavor eigenstates in terms of mass eigenstates: ν_e → ν_i → ν_μ → ν_j → ν_e → ν_k → ν_μ ···

Complementary Experiments:

- Tritium beta decay (absolute neutrino mass), KATRIN
- **Double beta decay** (nature, absolute mass and hierarchy of neutrinos)

Introduction

Double Beta Decay (Isobars A = 76)

MODE I: Two-Neutrino Double Beta Decay

INTRO: Two-Neutrino Double Beta Decay of ⁷⁶Ge

Introduction

MODE II: Neutrinoless Double Beta Decay

$0\nu\beta\beta$ Decay is Able to:

- Reveal if the neutrino is a Majorana particle
- Probe the neutrino effective mass $\langle m_{\nu} \rangle = \sum_{j=\text{light}} \lambda_j^{\text{CP}} |U_{ej}|^2 m_j$
- Probe the degenerate or inverted mass hierarchies (next-generation experiments!)
- Probe possibly the CP phases (nuclear matrix elements are critical!)

 $\begin{array}{c} (\nu_{\tau}) \nu_{3} & & \nu_{2} \\ (\nu_{\mu}) \nu_{2} & & & \\ (\nu_{\mu}) \nu_{2} & & & \\ (\nu_{e}) \nu_{1} & & & \\ \end{array} \right\} \Delta m_{\odot}^{2} & \nu_{3} & & \\ \end{array}$ Normal hierarchy Inverted hierarchy $\begin{array}{c} \Delta m_{\odot}^{2} & & \nu_{3} \\ \Delta m_{\odot}^{2} & & \nu_{3} \\ \Delta m_{\odot}^{2} & & & \\ \Delta m_{\odot}^{2} & = 7.67^{+0.16}_{-0.19} \times 10^{-5} \text{ eV}^{2} \\ \Delta m_{atm}^{2} & = 2.39^{+0.11}_{-0.08} \times 10^{-3} \text{ eV}^{2} \\ \text{[Global } 3\nu \text{ oscillation analysis (2008)]} \end{array}$

MASS MODE: $T_{1/2} \propto \langle m_{\nu} \rangle^2$

Jouni Suhonen (JYFL, Finland)

 0ν ECEC decays

INTRO: Neutrinoless Double Beta Decay of ⁷⁶Ge

Nuclear Matrix Elements and the $0\nu\beta\beta$ Decay

Decay rate:

$$\frac{\ln 2}{T_{1/2}} = g^{(0\nu)}(Q) [M^{(0\nu)}]^2 \langle m_{\nu} \rangle^2$$

- $g^{(0\nu)}(Q) \propto Q^5$ is the phase-space factor
- $M^{(0\nu)} =$ NUCLEAR MATRIX ELEMENT
- Effective neutrino mass:

$$\langle m_{\nu} \rangle = \sum_{j=\text{light}} \lambda_j^{\text{CP}} |U_{\text{e}j}|^2 m_j$$

About Experiments

UNDERGROUND LABORATORIES protect from COSMIC RAYS and their secondary particles

Canfranc (Spain) Kamioka (Japan) Boulby (England) Gran Sasso (Italy) Pyhäsalmi (Finland) Baksan (Ukraine) Modane (France-Italy) Sudbury (Canada)

Experiments Searching for $0\nu\beta\beta$ Decays:

Major Running Experiments:

- Heidelberg–Moscow (⁷⁶Ge) (ceased, claim of detection but result still **controversial**)
- NEMO3 (⁷⁶Ge ⁸²Se ⁹⁶Zr ¹⁰⁰Mo ¹¹⁶Cd ...) running in Modane
- Cuoricino (^{128,130}Te) running in Gran Sasso

Future Experiments:

SUPERNEMO (⁸²Se ¹⁰⁰Mo...), GERDA (⁷⁶Ge), MAJORANA (⁷⁶Ge), CAMEOII,III (¹¹⁶Cd), CUORE (^{128,130}Te), MOON (¹⁰⁰Mo), EXO (¹³⁶Xe), COBRA (⁷⁰Zn ^{106,114,116}Cd ^{128,130}Te), **ZORRO** (⁹⁶Zr)

These are in 100 – 1000 kg scale and cost about 10000000 EURO/\$ each!

New Challenges

Question:

HOW CAN WE PROBE THE VIRTUAL TRANSITIONS?

Complementary Experimental Probes $0\nu\beta\beta$ NMEs

Possible Experimental Probes:

- Beta decays (Need more data!) ↔ Measurements of EC branches using the TITAN ion trap facility at TRIUMF
- Charge-exchange reactions [β⁺-type (d,²He) reactions at KVI, Groningen; β⁻-type (³He,t) reactions at RCNP]
- Measurements of occupation numbers of active neutron orbitals

 ↔ (d,p), (α,³He) [add neutron] and (p,d), (³He,α) [remove neutron]
- Measurements of occupation numbers of active proton orbitals ↔ (³He,d) [add proton] and (d,³He) [remove proton]
- Ordinary muon capture (now experimentally feasible)

Nuclear Spectroscopy Associated to $\beta\beta$ Decays

It is desirable to describe reliably

- Lateral feeding by single beta decays
- Branching of $2\nu\beta\beta$ decays
- Poperties of the final states (energies, quadrupole moments, one-phonon and two-phonon structures, intruder states)
- Electromagnetic transitions between the final states

Introduction

 0ν ECEC decays

Recent Work on Double Electron Capture

Resonant 0ν ECEC Decays

Two-Neutrino Double Electron Capture

Initial nucleus (Z, N)

Neutrinoless Double Electron Capture

Radiative 0vECEC

Final nucleus (Z-2, N+2)

Resonant 0ν ECEC

Single-Hole States in Atoms

Resonant 0ν ECEC Decay

Decay rate:

 $\frac{\ln 2}{T_{1/2}} = \frac{g^{\text{ECEC}} [M^{\text{ECEC}}]^2 \langle m_{\nu} \rangle^2}{(Q-E)^2 + \Gamma^2/4} \Gamma , \quad Q-E = \text{ degeneracy parameter}$

- $g^{\text{ECEC}} = \text{phase-space factor}$
- *Q* = *M*(*Z*, *A*) − *M*(*Z* − 2, *A*) = difference between the initial and final atomic masses
- $E = E^* + E_H + E_{H'}$ = nuclear excitation energy + electron binding
- $\Gamma = \Gamma^* + \Gamma_H + \Gamma_{H'}$ = nuclear and atomic radiative widths
- $M^{\text{ECEC}} = \text{NUCLEAR MATRIX ELEMENT}$

Enhancement factors of 10⁶ possible (J. Bernabeu, A. De Rujula, and C. Jarlskog, Nucl. Phys. B 223 (1983) 15 ; Z. Sujkowski and S. Wycech, Phys. Rev. C 70 (2004) 052501(R))

 $\begin{array}{l} \mbox{Candidates:} {}^{74}Se \to {}^{74}Ge(2^+), {}^{78}Kr \to {}^{78}Se(2^+), {}^{106}Cd \to {}^{106}Pd(0^+), \\ {}^{112}Sn \to {}^{112}Cd(0^+), {}^{136}Ce \to {}^{136}Ba(0^+), \dots \end{array}$

Resonance 0ν ECEC Decay of ¹⁰⁶Cd

Half-life Estimate for ¹⁰⁶Cd

 $\Gamma = 6.1 \,\mathrm{eV}$; $M^{\mathrm{ECEC}} = 3.33$ (unitless NME)

Experimental Search for the Decay of ¹⁰⁶Cd

- Rita Bernabei *et al.*
- Use of ¹⁰⁶CdWO₄ (cadmium-tungstate) crystal scintillators. Enriched ¹⁰⁶Cd up to 66%.
- The experiment (DAMA) is located at Gran Sasso National Laboratories near L'Aquila in Italy. First results after 779 hours of data taking.
- For the 0ν ECEC mode of decay: $T_{1/2} \ge 1.7 \times 10^{20}$ years

Resonance 0ν ECEC Decay of ¹¹²Sn

Half-Life Estimate for ¹¹²Sn

 $\Gamma = \text{few tens of eV}$; $M^{\text{ECEC}} = 4.76$ (unitless NME)

Q value measured in JYFLTRAP (S Rahaman, V.-V. Elomaa, T. Eronen, J. Hakala, A. Jokinen, A. Kankainen, J. Rissanen, J. Suhonen, C. Weber, and J. Äystö, Phys. Rev. Lett. 103 (2009) 042501)

Q-E	=	-4.5 keV	for	KK capture
	=	18.2 keV	for	KL capture
	=	40.9 keV	for	LL capture

Hence:

 $T_{1/2} > \frac{5.9 \times 10^{29}}{(\langle m_{\nu} \rangle [\text{eV}])^2} \text{ years}$

Conclusion: Decay rate much suppressed by the rather large degeneracy parameter Q - E

Jouni Suhonen (JYFL, Finland)

Resonance 0ν ECEC Decay of ⁷⁴Se

Half-Life Estimate for ⁷⁴Se

 $\Gamma = \text{few tens of eV}$; $M_{0\nu}^{\text{ECEC}} < 0.0160$ (unitless NME)

Q value measured in JYFLTRAP (V.S. Kolhinen, V.-V. Elomaa, T. Eronen, J. Hakala, A. Jokinen, M. Kortelainen, J. Suhonen and J. Äystö, Phys. Lett. B 684 (2010) 17)

Q - E = 2.23 keV for LL capture (most favorable)

Hence:

 $T_{1/2} \approx \frac{5 \times 10^{43}}{(\langle m_{\nu} \rangle [\text{eV}])^2} \text{ years}$

Conclusion: Decay rate much suppressed both by the rather large degeneracy parameter Q - E and the very small NME for the 2_f^+ final state. The same occurs for the $2\nu\beta^-\beta^-$ decay (see M. Aunola and J. Suhonen, Nucl. Phys. A 602 (1996) 133)

Resonance 0ν ECEC Decay of ¹³⁶Ce

Half-Life Estimate for ¹³⁶Ce

 $\Gamma = 13.81 \,\mathrm{eV}$; $M^{\mathrm{ECEC}} = 0.250$ (unitless NME)

Q value measured in JYFLTRAP

2

Q-E	=	-11.67 keV	for	KK capture
	=	19.78 keV	for	KL capture
	=	51.24 keV	for	LL capture

Hence:

 $T_{1/2} > rac{2.26 imes 10^{33}}{(\langle m_{
u}
angle [{
m eV}])^2}$ years

Conclusion: Decay rate much suppressed by the rather large degeneracy parameter Q - E and the rather small NME

Conclusions and Outlook

Conclusions:

- Calculatons of the NMEs of 0νββ decays are of vital importance for extracting information on the absolute neutrino mass
- The 0*v*ECEC decay of ¹¹²Sn is NOT OBSERVABLE due to badly fulfilled resonance condition
- The 0*ν*ECEC decays of ⁷⁴Se and ¹³⁶Ce are NOT OBSERVABLE due to badly fulfilled resonance condition and tiny NME

Outlook:

- Other resonant 0ν ECEC decays, like the one of ¹⁰⁶Cd, should be studied for their Q values using the atom trap techniques
- Data on spectroscopic properties of nuclei should be extended to better test the nuclear-structure models used in double-beta calculations