ODD-ODD NUCLEI AS THE CORE-PARTICLE-HOLE SYSTEMS AND CHIRALITY

Chirality seen from the laboratory frame

S.G. Rohoziński¹, L. Próchniak², Ch. Droste¹, K. Starosta³

¹University of Warsaw ²Maria Curie Skłodowska University, Lublin ³Simon Fraser University, Vancouver

XVII Nuclear Physics Workshop "Marie & Pierre Curie" Kazimierz Dolny, 22–26 September 2010

Outline

Introduction: Chirality in nuclei

A description of odd-odd nuclei

- The Core-Particle-Hole Coupling (CPHC) Model
- Description of the even-even core
- The single-particle proton and neutron bases

Results and conclusions

- The calculations
- Symmetries of the core and the valence particles
- The α -symmetric cores
- The α-asymmetric cores
- The broken proton-neutron symmetry

Outline

Introduction: Chirality in nuclei

- A description of odd-odd nuclei
 - The Core-Particle-Hole Coupling (CPHC) Model
 - Description of the even-even core
 - The single-particle proton and neutron bases

Results and conclusions

- The calculations
- Symmetries of the core and the valence particles
- The α-symmetric cores
- The α-asymmetric cores
- The broken proton-neutron symmetry

CHIRALITY

- Chirality in nuclei the topic of the present session is since a few years a hot topic in the nuclear structure physics of odd and odd-odd nuclei. It allows us to interpret the odd nuclei spectra in a simple way.
- Is it really the chirality?

The chirality or the handedness phenomenon is usually connected with the inversion of the three-dimensional physical space.

In nuclear physics we discuss the chirality which is connected with time reversal rather than the space inversion.

(Perhaps, the term spin-chirality would be plausible to distinguish the phenomena.)

• A model nuclear chiral system considered originally is: the odd proton, the odd neutron hole, and the rigid triaxial even-even core.

(in the quasi-classical picture: the three mutually perpendicular angular momenta $\vec{j_{\pi}}, \vec{j_{\nu}}, \vec{R}$ along the three intrinsic principal axes of the core)

• I > • I > •

CHIRALITY

- Chirality in nuclei the topic of the present session is since a few years a hot topic in the nuclear structure physics of odd and odd-odd nuclei. It allows us to interpret the odd nuclei spectra in a simple way.
- Is it really the chirality?

The chirality or the handedness phenomenon is usually connected with the inversion of the three-dimensional physical space.

In nuclear physics we discuss the chirality which is connected with time reversal rather than the space inversion.

(Perhaps, the term spin-chirality would be plausible to distinguish the phenomena.)

• A model nuclear chiral system considered originally is: the odd proton, the odd neutron hole, and the rigid triaxial even-even core.

(in the quasi-classical picture: the three mutually perpendicular angular momenta $\vec{j_{\pi}}, \vec{j_{\nu}}, \vec{R}$ along the three intrinsic principal axes of the core)

• I > • I > •

CHIRALITY

- Chirality in nuclei the topic of the present session is since a few years a hot topic in the nuclear structure physics of odd and odd-odd nuclei. It allows us to interpret the odd nuclei spectra in a simple way.
- Is it really the chirality?

The chirality or the handedness phenomenon is usually connected with the inversion of the three-dimensional physical space.

In nuclear physics we discuss the chirality which is connected with time reversal rather than the space inversion.

(Perhaps, the term spin-chirality would be plausible to distinguish the phenomena.)

• A model nuclear chiral system considered originally is: the odd proton, the odd neutron hole, and the rigid triaxial even-even core.

(in the quasi-classical picture: the three mutually perpendicular angular momenta $\vec{j_{\pi}}, \vec{j_{\nu}}, \vec{R}$ along the three intrinsic principal axes of the core)

< 同 > < ∃ >

THE CHIRALITY SIGNATURES

Commonly considered main signatures of the chirality in nuclei:

- Appearance of a pair of the almost degenerate $\Delta I = 1$ bands of the same parity and similar electromagnetic properties (called chiral partner bands).
- Staggering of the intraband and interband M1 and $\Delta I = 1$ E2 transitions.

Our aim is to observe such features in odd-odd nuclei in the frame of the Core-Particle-Hole Coupling Model.

THE CHIRALITY SIGNATURES

Commonly considered main signatures of the chirality in nuclei:

- Appearance of a pair of the almost degenerate $\Delta I = 1$ bands of the same parity and similar electromagnetic properties (called chiral partner bands).
- Staggering of the intraband and interband M1 and $\Delta I = 1$ E2 transitions.

Our aim is to observe such features in odd-odd nuclei in the frame of the Core-Particle-Hole Coupling Model.

Outline

Introduction: Chirality in nuclei

A description of odd-odd nuclei

- The Core-Particle-Hole Coupling (CPHC) Model
- Description of the even-even core
- The single-particle proton and neutron bases

Results and conclusions

- The calculations
- Symmetries of the core and the valence particles
- The α-symmetric cores
- The α-asymmetric cores
- The broken proton-neutron symmetry

Core-Particle-Hole Coupling

- The odd-odd nucleus is treated as the three-body system: the even-even core, the proton and the neutron-hole.
- States of the odd-odd nucleus with the proton and neutron numbers *Z* and *N*, respectively, are assumed in the following form:

$$\begin{split} |Z, N; iIM \rangle \\ = \sum_{\rho, \sigma} \sum_{L, R, r} U_{li}(\rho, \sigma, L, R, r) \left[\left[a_{\pi \rho}^{\dagger} \times \tilde{a}_{\nu \sigma} \right]_{L} \times |Z - 1, N + 1; rR \rangle \right]_{IM} \end{split}$$

- The quadrupole-quadrupole two-body interaction between the proton, the neutron and the core is assumed.
 (The coupling constant χ₂ = 40MeV/b², relatively strong, is taken in the calculations)
- Details in: K. Starosta et al, Phys. Rev. C 65, 044328 (2002); Ch. Droste et al, Eur. Phys. J., 42, 79 (2009).

The Bohr Hamiltonian

The core states $|Z - 1, N + 1; rRM_R\rangle$ are described by a version of the Bohr Hamiltonian in the following form:

$$H(\beta,\gamma,\Omega) = -\frac{1}{2B_{\beta\beta}}\frac{1}{\beta^4}\frac{\partial}{\partial\beta}\left(\beta^4\frac{\partial}{\partial\beta}\right) - \frac{1}{2B(\gamma)}\frac{\Lambda^2(\gamma,\Omega)}{\beta^2} + V(\beta,\gamma)$$

with the potential of the form

$$V(\beta,\gamma) = \frac{1}{2} V_C \beta^2 + (G + h_1 \cos 3\gamma + h_2 (\cos^2 3\gamma - 1)^{\kappa}) \times (\exp(-\beta^2/d^2) - 1)$$

The Bohr Hamiltonian

• The seniority operator is

$$\Lambda^{2}(\gamma,\Omega) = \frac{1}{\sin 3\gamma} \frac{\partial}{\partial \gamma} \left(\sin 3\gamma \frac{\partial}{\partial \gamma} \right) - \sum_{k=1}^{3} \frac{R_{k}^{2}(\Omega)}{\sin^{2}(\gamma - 2\pi k/3)}$$

• Variables β and γ are the Bohr deformation parameters, Ω stands for the three Euler angles of orientation of the body-fixed system and $R_k(\Omega)$ for k = 1, 2, 3 are the three (dimensionless) intrinsic components of angular momentum.

The Bohr Hamiltonian

• The rotational inertial function is

$$B(\gamma) = b_0 + b_1 \cos 3\gamma$$

- The parameters of the potential V_C , G, h_1 , h_2 , κ and d, and the kinetic energy b_0 and b_1 and $B_{\beta\beta}$ are selected in a way to obtain the values of energy of the lowest excited state $E(2^+_1)$ and reduced transition probability $B(E2; 2^+_1 \rightarrow 0^+_1)$ always close to the experimental values $E(2^+_1) = 354$ keV and $B(E2; 2^+_1 \rightarrow 0^+_1) = 0.282 \ e^2 b^2$ for ${}^{128}_{56}$ Ba (A = 128, Z 1 = 56).
- Parameters h_2 and κ are responsible for the γ -softness of the potential.
- Parameters *h*₁ and *b*₁ are responsible for the *γ*-asymmetry of the Bohr Hamiltonian.

Proton and neutron states

- The proton and the neutron hole can occupy the single-particle states in the spherically symmetric potential well: πρ = πnl_i and νσ = νnl_i, respectively.
- The calculations are performed assuming that the proton and neutron bases contain only one orbital *ρ* and *σ*, respectively.
- For the proton $\rho = h_{11/2}$.
- For the neutron $\sigma = h_{11/2}$, or $g_{9/2}$.

Outline

Introduction: Chirality in nuclei

A description of odd-odd nuclei

- The Core-Particle-Hole Coupling (CPHC) Model
- Description of the even-even core
- The single-particle proton and neutron bases

Results and conclusions

- The calculations
- Symmetries of the core and the valence particles
- The α-symmetric cores
- The α-asymmetric cores
- The broken proton-neutron symmetry

Principles of the calculations

- A fictitious nucleus with Z = 57, N = 71 (¹²⁸La ?).
- Variants of the calculation:
 - The α -symmetric cores: $h_1 = b_1 = 0$, and $h_2 = 20$ MeV [potential well (PW)], $h_2 = -8$ MeV [potential barrier (PB)], compared to $h_2 = 0$ [the Wilets-Jean (WJ) soft potential], The single-particle states: $\rho = \sigma = h_{11/2} (\pi h \otimes \nu h)$.
 - The α -asymmetric cores: $h_2 = 0$, $b_1 = 0$, and $h_1 = 2 \text{ MeV } [\langle \gamma \rangle \approx 21^\circ]$, $h_1 = 8 \text{ MeV } [\langle \gamma \rangle \approx 15^\circ]$,

The single-particle states: $\rho = \sigma = h_{11/2}$.

• The Wilets-Jean potential : $h_1 = h_2 = b_1 = 0$, The different single-particle states: proton $\rho = h_{11/2}^-$, neutron $\sigma = g_{9/2}^+$ $(\pi h \otimes \nu g)$.

The α -parity of the core

• The laboratory quadrupole variables are related to β , γ , Ω as follows:

$$\alpha_{\mu}(\beta,\gamma,\Omega) = D_{\mu0}^{2}(\Omega)\beta\cos\gamma + \frac{1}{\sqrt{2}}\left(D_{\mu2}^{2}(\Omega) + D_{\mu-2}^{2}(\Omega)\right)\beta\sin\gamma$$

- The inversion in the five-dimensional space (the O(5) inversion) is: $\alpha_{2\mu} \to -\alpha_{2\mu}$
- A possible realisation of the inversion in the intrinsic variables: $\gamma \rightarrow \gamma \pm \pi$.
- If the Bohr Hamiltonian is invariant under the O(5) inversion (the α-symmetric) the core states possess the definite α-parity (the γ-parity introduced by Bés, 1959).
- In the present calculations
 - when $h_1 = b_1 = 0$ the core is the α -symmetric,
 - when h₁ ≠ 0 (the α-asymmetric potential) and/or b₁ ≠ 0 (the α-asymmetric kinetic energy) the α-symmetry is broken.

The proton-neutron symmetry

• The symmetry with respect to the exchange of the proton and the neutron states:

 $\pi \rho \rightarrow \pi \sigma, \nu \sigma \rightarrow \nu \rho$

is (a bit misleading) called the proton-neutron symmetry.

- It is not the particle-hole exchange (time reversal).
- In the present calculations
 - when $\rho = \sigma = h_{11/2}$ (the proton and the neutron hole on the same orbital) the proton-neutron symmetry is conserved,
 - when $\rho = h_{11/2}$ and $\sigma = g_{9/2}$ (the proton and the neutron hole on different orbitals) the proton-neutron symmetry is broken.

The α -symmetric cores

Collective α -symmetric potentials

XVII Nuclear Physics Workshop, Kazimierz 2010

Odd-odd nuclei and chirality

Partner bands

Ground (g) and side (s) partner bands at α -symmetric cores and $\pi h_{11/2} \otimes \nu h_{11/2}^{-1}$

Partner bands

- The partner bands appear for an arbitrary rigidity.
- The bands become more and more stretched when the core is more and more rigid.
- The bands are the most split and squeezed for the potential barrier in γ .

Magnetic dipole moments

Figure: Magnetic dipole moments $\mu(I_g)$.

Electromagnetic moments

- The magnetic dipole moments in the s-band states are close to those in the g-band states.
- The magnetic dipole moments are independent practically on the rigidity of the core.
- The quadrupole electric moments are smaller than the single-particle estimates for a given spin (|Q| < 0.1eb) for the states of both bands at each rigidity of the core.

Stretched E2 transitions

Figure: Reduced transition probabilities $B(E2; I_b \rightarrow (I-2)_b)$ of the stretched intra-band E2 transitions for the b=g ground band and the b=s side band.

$\Delta I = 1$ intra-band transitions

Figure: Reduced transition probabilities of the $\Delta I = 1$ intra-band electromagnetic transitions for the ground band.

$\Delta I = 1$ inter-band transitions

Figure: Reduced transition probabilities of the $\Delta I = 1$ inter-band electromagnetic transitions.

ъ

The α -symmetry — conclusion

- Properties of the partner bands:
 - A small splitting of the bands.
 - The similar electromagnetic properties (moments and transitions).
 - The strong staggering of the intra- and the inter-band E2 and M1 transitions.
- The chirality signatures are manifested in all cases of the α -symmetric cores and the particle and the hole on the same orbital.

The α -symmetry — conclusion

- Properties of the partner bands:
 - A small splitting of the bands.
 - The similar electromagnetic properties (moments and transitions).
 - The strong staggering of the intra- and the inter-band E2 and M1 transitions.
- The chirality signatures are manifested in all cases of the *α*-symmetric cores and the particle and the hole on the same orbital.

The α -asymmetric cores

Collective α -asymmetric potentials

Partner bands

Ground (g) and side (s) (partner?) bands at α -asymmetric cores and $\pi h_{11/2} \otimes \nu h_{11/2}^{-1}$

Magnetic dipole moments

Figure: Magnetic dipole moments $\mu(l_b)$ for the ground (b=g) and the side (b=s) bands.

Electric quadrupole moments

Figure: Electric quadrupole moments $Q(I_b)$ for the ground (b=g) and the side (b=s) bands.

Electromagnetic moments

- Small differences between the magnetic dipole moments of states in the ground and side bands.
- Considerable values of the electric quadrupole moments.
- Visible differences between the values of *Q* in the states of the ground and side bands.

The α -asymmetric cores

Stretched E2 transitions

Figure: Reduced transition probabilities $B(E2; I_b \rightarrow (I-2)_b)$ of the stretched intra-band E2 transitions for the b=g ground band and the b=s side band.

$\Delta I = 1$ electromagnetic intra-band transitions

Figure: Reduced transition probabilities of the $\Delta I = 1$ intra-band electromagnetic transitions for the ground band.

$\Delta I = 1$ electromagnetic inter-band transitions

Figure: Reduced transition probabilities of the $\Delta I = 1$ inter-band electromagnetic transitions.

The α -asymmetry — conclusion

• Properties of the partner bands:

- A strong splitting of the partner bands.
- Not quite big differences between the electromagnetic properties of the partner bands.
- The immediate disappearance of staggering in the intra- and the inter-band
 - $\Delta I = 1$ electromagnetic transitions with the appearance of the asymmetry.
- The signatures of chirality vanish in the cases of the α -asymmetry of the core.
- A similar conclusion could be drawn in the case of the α-asymmetry in the collective kinetic energy (b₁ ≠ 0).

The α -asymmetry — conclusion

• Properties of the partner bands:

- A strong splitting of the partner bands.
- Not quite big differences between the electromagnetic properties of the partner bands.
- The immediate disappearance of staggering in the intra- and the inter-band
 - $\Delta I = 1$ electromagnetic transitions with the appearance of the asymmetry.
- The signatures of chirality vanish in the cases of the α -asymmetry of the core.
- A similar conclusion could be drawn in the case of the α -asymmetry in the collective kinetic energy ($b_1 \neq 0$).

The α -asymmetry — conclusion

- Properties of the partner bands:
 - A strong splitting of the partner bands.
 - Not quite big differences between the electromagnetic properties of the partner bands.
 - The immediate disappearance of staggering in the intra- and the inter-band
 - $\Delta I = 1$ electromagnetic transitions with the appearance of the asymmetry.
- The signatures of chirality vanish in the cases of the α -asymmetry of the core.
- A similar conclusion could be drawn in the case of the *α*-asymmetry in the collective kinetic energy (*b*₁ ≠ 0).

Partner bands

Ground (g) and side (s) partner bands at the WJ soft core and $\pi h_{11/2} \otimes \nu g_{9/2}^{-1}$

3 🔺 🖌 3

Stretched E2 transitions

Figure: Reduced transition probabilities $B(E2; I_b \rightarrow (I-2)_b)$ of the stretched intra-band E2 transitions for the b=g ground band and the b=s side band.

$\Delta I = 1$ electromagnetic transitions

Figure: Reduced transition probabilities of the $\Delta I = 1$ intra-band (left) and inter-band (right) electromagnetic transitions.

The broken proton-neutron symmetry — conclusion

- Properties of the partner bands:
 - A little stronger splitting the partner bands than that in the case of the same orbitals.
 - Weak differences between the electromagnetic properties of the ground and side bands.
 - A weaker and irregular staggering of the intra- and the inter-band electromagnetic transitions.

• The signatures of chirality are obscure.

The broken proton-neutron symmetry — conclusion

- Properties of the partner bands:
 - A little stronger splitting the partner bands than that in the case of the same orbitals.
 - Weak differences between the electromagnetic properties of the ground and side bands.
 - A weaker and irregular staggering of the intra- and the inter-band electromagnetic transitions.
- The signatures of chirality are obscure.

- The use of the laboratory frame of reference:
 - The body-fixed frame of reference is eventually introduced in the description of the core structure
 - The properties of the core enter the description of the odd-odd nucleus only through the energies of the collective levels and the E2 matrix elements within the collective states.
 - No need and will to introduce an intrinsic frame of reference in the calculations for the odd-odd nucleus.
 - No assumptions of the chiral symmetry were made.
- Sufficient conditions for the odd-odd nucleus to manifest the chirality signatures are:
 - The odd-odd nucleus can be described as the three-body system: the even-even core, the proton and the neutron hole.
 - The core is the α -symmetric regardless of its rigidity.
 - The proton-neutron symmetry is conserved.

- The use of the laboratory frame of reference:
 - The body-fixed frame of reference is eventually introduced in the description of the core structure
 - The properties of the core enter the description of the odd-odd nucleus only through the energies of the collective levels and the E2 matrix elements within the collective states.
 - No need and will to introduce an intrinsic frame of reference in the calculations for the odd-odd nucleus.
 - No assumptions of the chiral symmetry were made.
- Sufficient conditions for the odd-odd nucleus to manifest the chirality signatures are:
 - The odd-odd nucleus can be described as the three-body system: the even-even core, the proton and the neutron hole.
 - The core is the α -symmetric regardless of its rigidity.
 - The proton-neutron symmetry is conserved.

- The use of the laboratory frame of reference:
 - The body-fixed frame of reference is eventually introduced in the description of the core structure
 - The properties of the core enter the description of the odd-odd nucleus only through the energies of the collective levels and the E2 matrix elements within the collective states.
 - No need and will to introduce an intrinsic frame of reference in the calculations for the odd-odd nucleus.
 - No assumptions of the chiral symmetry were made.
- Sufficient conditions for the odd-odd nucleus to manifest the chirality signatures are:
 - The odd-odd nucleus can be described as the three-body system: the even-even core, the proton and the neutron hole.
 - The core is the α -symmetric regardless of its rigidity.
 - The proton-neutron symmetry is conserved.

- The use of the laboratory frame of reference:
 - The body-fixed frame of reference is eventually introduced in the description of the core structure
 - The properties of the core enter the description of the odd-odd nucleus only through the energies of the collective levels and the E2 matrix elements within the collective states.
 - No need and will to introduce an intrinsic frame of reference in the calculations for the odd-odd nucleus.
 - No assumptions of the chiral symmetry were made.
- Sufficient conditions for the odd-odd nucleus to manifest the chirality signatures are:
 - The odd-odd nucleus can be described as the three-body system: the even-even core, the proton and the neutron hole.
 - The core is the α -symmetric regardless of its rigidity.
 - The proton-neutron symmetry is conserved.

- The use of the laboratory frame of reference:
 - The body-fixed frame of reference is eventually introduced in the description of the core structure
 - The properties of the core enter the description of the odd-odd nucleus only through the energies of the collective levels and the E2 matrix elements within the collective states.
 - No need and will to introduce an intrinsic frame of reference in the calculations for the odd-odd nucleus.
 - No assumptions of the chiral symmetry were made.
- Sufficient conditions for the odd-odd nucleus to manifest the chirality signatures are:
 - The odd-odd nucleus can be described as the three-body system: the even-even core, the proton and the neutron hole.
 - The core is the α -symmetric regardless of its rigidity.
 - The proton-neutron symmetry is conserved.