Microscopic Corrections at Scission Configurations when Mass Symmetry Is Broken

Krzysztof Pomorski

Theoretical Physics Division

Maria Curie-Skłodowska University, Lublin, Poland

 $17^{\rm th}$ Nuclear Physics Workshop

Kazimierz Dolny, September 22-26, 2010

During the 15th Workshop in Kazimierz, 2008

Władysław Jan Świątecki (1926 - 2009)

My coworkers:

- Johann Bartel IPHC and University of Strasbourg
- Artur Dobrowolski University MCS, Lublin
- Fedir Ivaniuk KINR, Kyiv
- Bożena Nerlo-Pomorska University MCS, Lublin

Contents:

- Introduction
- Molecular structure of 232 Th in the 3^{rd} minimum.
- Macro-micro model with the Lublin-Strasbourg Drop.
- Potential energy surfaces, fission barriers and the role of the congruence energy.
- Strutinsky shell correction for bulk and almost separated systems.
- Pairing correlations around scission configuration.
- Influence of the pairing average energy of the barrier heights.
- Topographical theorem of Świątecki and the saddle point masses and the barrier heights.
- Summary

Single-particle levels in the nascent fragments

Fission barrier of ²³²Th within the HFB+Gogny

J.F. Berger and K. Pomorski, Phys. Rev. Lett. 85 (1999) 30.

Microscopic Corrections at Scission Configurations when Mass Symmetry Is Broken - p.6/28

Densities evaluated within the HFB theory by J.F. Berger et al.

Molecular structure of 232 Th in the 3rd minimum?

Macroscopic – Microscopic Model*:

$$egin{aligned} M(Z,N; ext{def}) &= ZM_{ ext{H}} + NM_{ ext{n}} - b_{ ext{elec}} \, Z^{2...} \ &+ b_{ ext{vol}} \, \left(1 - \kappa_{ ext{vol}} \, I^2 \,
ight) A \ &+ b_{ ext{surf}} \left(1 - \kappa_{ ext{surf}} I^2 \,
ight) A^{2/3} B_{ ext{surf}}(ext{def}) \ &+ b_{ ext{cur}} \, \left(1 - \kappa_{ ext{cur}} \, I^2 \,
ight) A^{1/3} B_{ ext{cur}}(ext{def}) \ &+ rac{3}{5} \, rac{e^2 Z^2}{r_0^{ch} A^{1/3}} \, B_{ ext{Coul}}(ext{def}) - C_4 \, rac{Z^2}{A} \ &+ E_{ ext{micr}}(Z,N; ext{def}) + E_{ ext{cong}}(Z,N) \end{aligned}$$

*W.D. Myers and W.J. Świątecki, Nucl. Phys. 81, 1 1966.

Shell and Pairing Corrections:
where
$$E_{\rm micr} = \delta E_{\rm shell} + \delta E_{\rm pair} ,$$

$$\delta E_{\rm shell} = \sum_{occ} 2e_{\nu} - \langle \sum_{occ} 2e_{\nu} \rangle_{\rm Strut} ,$$

$$\delta E_{\rm pair} = E_{\rm pair} - \langle E_{\rm pair} \rangle ,$$
with
$$E_{\rm pair} = E_{\rm BCS} - \sum_{occ} 2e_{\nu} ,$$
and
$$E_{\rm BCS} = \sum_{\nu} 2v_{\nu}^2 e_{\nu} - G \sum_{\nu} u_{\nu} v_{\nu} - G \sum_{\nu} v_{\nu}^4$$

PES of ²⁴⁰Pu on the (c,h) plane for $\alpha=0$, $\eta=0$:

LSD with shell and pairing corrections are obtained with the Yukawa-folded single-particle potential.

A. Dobrowolski, K. Pomorski, J. Bartel, Phys. Rev. C75(2007) 024613.

Microscopic Corrections at Scission Configurations when Mass Symmetry Is Broken - p.11/28

Fission barrier:

 $V_B = M_{\text{sadd}} - M_{\text{g.s.}}$

Fission barrier heights:

Deformation dependent congruence energy term is included here according to: W.D. Myers, W.J. Świątecki, Nucl. Phys. A612 (1997) 249. K. Pomorski, J. Dudek, Int. Journ. Mod. Phys. E13 (2004) 107.

Strutinsky smoothed energy

In this method one evaluates first the smooth s.p. particle level density $\tilde{g}(e)$ by folding the discrete spectrum of s.p. energies e_{ν}

$$g(e) = \sum_{
u} \delta(e-e_{
u}) \quad \longrightarrow \quad ilde{g}(e) = rac{1}{\gamma_S} \sum_{
u} j_n \left(rac{e-e_{
u}}{\gamma_S}
ight) \; ,$$

where for
$$n=6$$
 $j_6(x)=rac{1}{\sqrt{\pi}}e^{-x^2}(rac{35}{16}-rac{35}{8}x^2+rac{7}{4}x^4-x^6)$

According to Strutinsky the smoothed s.p. energy is given by

$$ilde{E}_{
m Str} = \int \limits_{-\infty}^{ ilde{\lambda}} 2\,e\, ilde{g}(e)\,de\,\,, \qquad \mathcal{N} = \int \limits_{-\infty}^{ ilde{\lambda}} 2\, ilde{g}(e)\,de\,\,.$$

where $\tilde{\lambda}$ is the Fermi energy in a system without the shell structure.

Additive property of the shell corrections:

Let us consider two separated fission fragments with the s.p. spectra $\{e\} \equiv \{e^l, e^h\}$ and having the same average Fermi energies as the mother system: $\tilde{\lambda}^l = \tilde{\lambda}^h = \tilde{\lambda}$ One can easy show that for such a systems the following relations are hold:

$$ilde{E}_{ ext{Str}} = ilde{E}_{ ext{Str}}^l + ilde{E}_{ ext{Str}}^h \quad ext{and} \quad \mathcal{N} = \mathcal{N}^l + \mathcal{N}^h$$

what means that

and

$$E_{shell} = E^l_{shell} + E^r_{shell}$$

The same is not true for the monopole pairing energy as the average pairing gaps could be different in the both fragments.

Pairing correlations in almost separated systems:

Let us consider two separated fission fragments with the s.p. spectra $\{e\} \equiv \{e^l, e^h\}$ described by the following Hamiltonian:

$$\hat{H} = \hat{H}_0 + \hat{H}_{pair} = \sum_
u e_
u \left(a^+_
u a_
u + a^+_{ar
u} a_{ar
u}
ight) - G \sum_{
u,\mu} a^+_
u a^+_{ar
u} a_\mu$$

which can be rewritten as

$$\hat{H}_{0} = \hat{H}_{0}^{l} + \hat{H}_{0}^{h} - G_{l}\hat{P}_{l}^{+}\hat{P}_{l} - G_{h}\hat{P}_{h}^{+}\hat{P}_{h} - G_{lh}\left(\hat{P}_{l}^{+}\hat{P}_{h} + P_{h}^{+}\hat{P}_{l}\right)$$

Here
$$\hat{P}_l^+ = (\hat{P}_l)^+$$
, $\hat{P}_l = \sum_
u a_{ar
u}^l a_
u^l$ and $\hat{P}_h = \sum_
u a_{ar
u}^h a_
u^h$.

It is obvious that in case of the separated fragments the approximation $G_l = G_h = G_{lh} = G$ is not valid any more and it rather holds $G_l \ge G_h > G$ and $G_{lh} \approx 0$.

Pairing correlations in almost separated systems:

In such approximation the BCS equations takes the following form:

$$\frac{2}{G} = \sum_{\nu} \frac{1}{E_{\nu}} \neq \sum_{\nu} \frac{1}{E_{\nu}^{l}} + \sum_{\nu} \frac{1}{E_{\nu}^{h}} = \frac{2}{G_{l}} + \frac{2}{G_{h}}$$

and

$$N = \sum_{
u} 2v_{
u}^2 = \sum_{
u} 2(v_{
u}^l)^2 + \sum_{
u} 2(v_{
u}^h)^2 = N_l + N_h \; ,$$

where

$$E^l_
u = \sqrt{(e^l_
u - \lambda_l)^2 + \Delta_l^2} \ ,$$

 $(v^l_
u)^2 = rac{1}{2} \left(1 - rac{e^l_i - \lambda_l}{E^l_i}
ight) \ , \quad ext{etc.}$

with $\Delta \neq \Delta_l \neq \Delta_h$ and $\lambda \approx \lambda_l \approx \lambda_h$.

Shell and pairing energy of fragments and mother nucleus:

Two Nilsson wells are used here.

Shell and pairing energy of two separated fragments:

Microscopic Corrections at Scission Configurations when Mass Symmetry Is Broken – p.19/28

Average pairing energy:

$$E_{
m pair} = \sum_{
u} 2 v_{
u}^2 e_{
u} - G \sum_{
u} u_{
u} v_{
u} - G \sum_{
u} v_{
u}^4 - \sum_{
m occ} 2 e_{
u} \; ,$$

After replacing sums by integrals and assuming $\Omega\gg\Delta$

$$\sum_
u(...) o rac{1}{2} \int \limits_{\lambda - \Omega}^{\lambda + \Omega} (...) ilde{g}(e) de$$

the average pairing energy becomes:

$$\widetilde{E}_{
m pair}pprox -rac{1}{4} ilde{g}(\lambda)\Delta^2 - G\,rac{N}{2}+\;....$$

The average gap equation takes the following form:

$$\Delta = G \sum_{
u} u_
u v_
u ~
ightarrow ~rac{2}{G} pprox g(\lambda) \ln\left(rac{2\Omega}{\Delta}
ight)$$

Average pairing energy*:

The pairing strength was evaluated using the average experimental gaps

$$ar{\Delta}^{(p)}_{ ext{exp}} = rac{4.8 \, B_s}{Z^{1/3}} ext{MeV} \; ; \quad ar{\Delta}^{(n)}_{ ext{exp}} = rac{4.8 \, B_s}{N^{1/3}} ext{MeV}$$

taken from Ref. {P. Möller and J.R. Nix, Nucl. Phys. A536 (1992) 61 }.

*K. Pomorski, F. Ivanyuk, Int. Journ. Mod. Phys. E18 (2009) 900.

Average pairing energy is A almost independent !!

- What does it mean?
- What will happen with the pairing energy when nucleus fission into two fragments?

 Should the pairing strength depend on deformation of fissioning nucleus?

Effect of the congruence and the average pairing*:

*K. Pomorski, F. Ivanyuk, Int. Journ. Mod. Phys. E18 (2009) 900.

Effect of the congruence and the average pairing*:

*K. Pomorski, F. Ivanyuk, Int. Journ. Mod. Phys. E18 (2009) 900.

Topographical theorem of Swiatecki

Pure LSD saddle point masses of heavy nuclei:

W. D. Myers, W.J. Świątecki, Nucl.Phys. A612 (1997) 249. ← Topographical theorem

J. Bartel, A. Dobrowolski, and K. Pomorski, IJMP E16, 459 (2007)

LSD barriers according to the topographical theorem

Summary:

- Binuclear structure of fissioning nuclei is manifested already at deformations corresponding to the third minimum.
- Shell energies of the fission fragments are additive and their sum is close to the shell energy of the common system.
- Pairing energies could be different in each nascent fragment and their sum differs from the pairing energy evaluated for the common system.
- Inclusion of the deformation dependent congruence (Wigner) energy and taking the pairing strength proportional to the surface area improves significantly the estimates of the barrier heights of the light nuclei.
- Lublin Strasburg Drop describes well masses of the known isotopes both in the ground state and saddle points.