Shape evolution in even-even Mo isotopes studied via Coulomb excitation

Katarzyna Wrzosek-Lipska

Heavy Ion Laboratory, University of Warsaw

17th Nuclear Physics Workshop "Marie & Pierre Curie" Kazimierz 2010

Outline

Motivation.

- Quadrupole Sum Rules method practical application to the stable Mo isotopes.
- Quadrupole deformation parameters of the heaviest stable Mo isotopes.
- Comparison of the experimentally obtained results with the General Bohr Hamiltonian calculations.
- Conclusions

Motivation

- Transitional nuclei (A~100) challenging for nuclear structure theories: competition of single-particle and collective excitation modes.
- In the Sr and Zr isotopic chain a dramatic change of the ground state structure is observed at N = 58, 60.
- This effect is less pronounced in Mo isotopes, but still the rapidity of shape change gives rise to shape coexistence in these nuclei.

Motivation

- Transitional nuclei (A~100) challenging for nuclear structure theories: competition of single-particle and collective excitation modes.
- In the Sr and Zr isotopic chain a dramatic change of the ground state structure is observed at N = 58, 60.
- This effect is less pronounced in Mo isotopes, but still the rapidity of shape change gives rise to shape coexistence in these nuclei.

Motivation

- Transitional nuclei (A~100) challenging for nuclear structure theories: competition of single-particle and collective excitation modes.
- In the Sr and Zr isotopic chain a dramatic change of the ground state structure is observed at N = 58, 60.
- This effect is less pronounced in Mo isotopes, but still the rapidity of shape change gives rise to shape coexistence in these nuclei.

even-even Mo isotopes

Low-lying 0⁺ states characteristic for transitional nuclei (A~100 around N = 60) In extreme cases the second 0⁺ state appears to be the first excited state.

6+

- Such a rare structure first experimental indication of shape coexistence phenomenon.
- What is the shape of the two lowest 0⁺ states in the heaviest stable ^{96,98,100}Mo isotopes?
- Low-energy Coulomb excitation the only experimental technique that can distinguish between prolate and oblate character of the deformation of the investigated nucleus for each level.

Coulomb excitation experiments @ HIL in Warsaw

• particle detection system: 44 PiN diodes placed at backward angles $(\theta_{LAB} = 112^{\circ} - 152^{\circ})$

 Gamma rays detection array: OSIRIS-II spectrometer (12HPGe detectors)

- The deexcitation γ rays **mesured in coincidence** with backscattered particles.
- A complete set of E2 matrix elements, **including signs and magnitudes**, can be extracted for low-lying states in nuclei.

Reduced matrix elements in 96,98,100 Mo

- HIL (Warsaw), JAERI (Tokai)
- 26 reduced E2 and M1 matrix elements:

- 20 transitional E2 matrix elements
- 3 transitional M1 matrix elements

- HIL (Warsaw), JAERI (Tokai)
- **19** reduced E2 and M1 matrix elements:

- **13** transitional E2 matrix elements
- 2 transitional M1 matrix elements

HIL (Warsaw)

3-

- 26 reduced E2, E1, E3, M1 matrix elements:
- **16** transitional E2 matrix elements
- 2 transitional M1 matrix elements
- **2** transitional E1 and E3 matrix elements

Reduced matrix elements in 96,98,100 Mo

- HIL (Warsaw), JAERI (Tokai)
- 26 reduced E2 and M1 matrix elements:
- 3 diagonal E2 matrix elements
- **20** transitional E2 matrix elements
- 3 transitional M1 matrix elements

- HIL (Warsaw), JAERI (Tokai)
- 19 reduced E2 and M1 matrix elements:
- 4 diagonal E2 matrix elements
- **13** transitional E2 matrix elements
- 2 transitional M1 matrix elements

HIL (Warsaw)

3-

- 26 reduced E2, E1, E3, M1 matrix elements:
- 4 diagonal E2 matrix elements
- **16** transitional E2 matrix elements
- 2 transitional M1 matrix elements
- **2** transitional E1 and E3 matrix elements

Rotation invariant <Q²>

Quadrupole Sum Rules Method (D. Cline, Ann. Rev. Nucl. Part. Sci. 36 (1986) 683)

For E2 transitions from the 0^+ states one can form quadrupole tensor products coupled to angular momentum 0 - i.e. **rotation invariant**

$$\frac{\langle Q^2 \rangle}{\sqrt{5}} = \langle i | [E2 \times E2]_0 | i \rangle = \frac{1}{\sqrt{(2I_i + 1)}} \sum_t \langle i | | E2 | | t \rangle \langle t | | E2 | | i \rangle \left\{ \begin{array}{ccc} 2 & 2 & 0 \\ I_i & I_i & I_t \end{array} \right\}$$

 $\langle Q^2 \rangle$ is an overall quadrupole deformation parameter

Rotation invariant <Q²>

Quadrupole Sum Rules Method (D. Cline, Ann. Rev. Nucl. Part. Sci. 36 (1986) 683)

For E2 transitions from the 0^+ states one can form quadrupole tensor products coupled to angular momentum 0 - i.e. rotation invariant

$$\frac{\langle Q^2 \rangle}{\sqrt{5}} = \langle i | [E2 \times E2]_0 | i \rangle = \frac{1}{\sqrt{(2I_i + 1)}} \sum_t \langle i | | E2 | | t \rangle \langle t | | E2 | | i \rangle \left\{ \begin{array}{ccc} 2 & 2 & 0 \\ I_i & I_i & I_t \end{array} \right\}$$

 $\langle Q^2 \rangle$ is an overall quadrupole deformation parameter

state	the component	contributions to
	$E2{ imes}E2$	the $\langle Q^2 \rangle$ [e ² b ²]
	$\langle 0_1^+ E2 2_1^+ \rangle \langle 2_1^+ E2 0_1^+ \rangle$	0.46
0^+_1	$\langle 0_1^+ E2 2_2^+ \rangle \langle 2_2^+ E2 0_1^+ \rangle$	0.01
	$\langle 0_1^+ E2 2_3^+ \rangle \langle 2_3^+ E2 0_1^+ \rangle$	0.0002
	Total	0.48

0+1

HIL

Rotation invariant $<Q^3cos(3\delta)>$

Quadrupole Sum Rules Method (D. Cline, Ann. Rev. Nucl. Part. Sci. 36 (1986) 683)

To get information on triaxiality the higher order invariant is needed:

$$\begin{split} &\sqrt{\frac{2}{35}} \langle Q^3 \cos 3\delta \rangle = \langle i | [E2 \times E2]_2 \times E2]_0 | i \rangle = \\ &= \pm \frac{1}{(2I_i + 1)} \sum_{t,u} \langle i || E2 || u \rangle \langle u || E2 || t \rangle \langle t || E2 || i \rangle \left\{ \begin{array}{ccc} 2 & 2 & 0 \\ I_i & I_u & I_t \end{array} \right\} \end{split}$$

 $\langle \cos 3\delta \rangle$ is a **triaxiality** parameter

Rotation invariant $<Q^3cos(3\delta)>$

Quadrupole Sum Rules Method (D. Cline, Ann. Rev. Nucl. Part. Sci. 36 (1986) 683)

To get information on triaxiality the higher order invariant is needed:

$$\begin{split} &\sqrt{\frac{2}{35}} \langle Q^3 \cos 3\delta \rangle = \langle i \, | [E2 \times E2]_2 \times E2]_0 | \, i \rangle = \\ &= \pm \frac{1}{(2I_i + 1)} \sum_{t,u} \langle i | | E2 | | u \rangle \langle u | | E2 | | t \rangle \langle t | | E2 | | i \rangle \left\{ \begin{array}{ccc} 2 & 2 & 0 \\ I_i & I_u & I_t \end{array} \right\} \end{split}$$

 $\langle \cos 3\delta \rangle$ is a **triaxiality** parameter

Determination of the triaxiality of ¹⁰⁰Mo

state	the component	$\operatorname{contributions}$
	${ m E2{ imes}E2{ imes}E2}$	to $\langle Q^3 cos 3\delta \rangle$
	$\langle 0_1^+ E2 2_1^+ \rangle \langle 2_1^+ E2 2_1^+ \rangle \langle 2_1^+ E2 0_1^+ \rangle$	-0.154
	$\langle 0_1^+ E2 2_1^+ \rangle \langle 2_1^+ E2 2_2^+ \rangle \langle 2_2^+ E2 0_1^+ \rangle$	0.132
	$\langle 0_1^+ E2 2_1^+ \rangle \langle 2_1^+ E2 2_3^+ \rangle \langle 2_3^+ E2 0_1^+ \rangle$	0.002
0+	$\langle 0_1^+ E2 2_2^+ \rangle \langle 2_2^+ E2 2_2^+ \rangle \langle 2_2^+ E2 0_1^+ \rangle$	0.013
01	$ \langle 0_1^+ E2 2_2^+ \rangle \langle 2_2^+ E2 2_3^+ \rangle \langle 2_3^+ E2 0_1^+ \rangle \\ \langle 0_1^+ E2 2_3^+ \rangle \langle 2_3^+ E2 2_3^+ \rangle \langle 2_3^+ E2 0_1^+ \rangle $	-0.001 -0.0001
	Total	-0.008

Determination of the triaxiality of ¹⁰⁰Mo

state	the component	contributions
	${ m E2}{ imes}{ m E2}{ imes}{ m E2}$	to $\langle Q^3 cos 3\delta \rangle$
	$\langle 0_1^+ E2 2_1^+ \rangle \langle 2_1^+ E2 2_1^+ \rangle \langle 2_1^+ E2 0_1^+ \rangle$	-0.154
	$\langle 0_1^+ E2 2_1^+ \rangle \langle 2_1^+ E2 2_2^+ \rangle \langle 2_2^+ E2 0_1^+ \rangle$	0.132
	$\langle 0_1^+ E2 2_1^+ \rangle \langle 2_1^+ E2 2_3^+ \rangle \langle 2_3^+ E2 0_1^+ \rangle$	0.002
0+	$\langle 0_1^+ E2 2_2^+ \rangle \langle 2_2^+ E2 2_2^+ \rangle \langle 2_2^+ E2 0_1^+ \rangle$	0.013
01	$\langle 0_1^+ E2 2_2^+ \rangle \langle 2_2^+ E2 2_3^+ \rangle \langle 2_3^+ E2 0_1^+ \rangle$	-0.001
	$\langle 0_1^+ E2 2_3^+ \rangle \langle 2_3^+ E2 2_3^+ \rangle \langle 2_3^+ E2 0_1^+ \rangle$	-0.0001
	Total	-0.008
	$Total$ $\langle 0_2^+ E2 2_1^+ \rangle \langle 2_1^+ E2 2_1^+ \rangle \langle 0_2^+ E2 2_1^+ \rangle$	-0.008
	$Total \langle 0_{2}^{+} E2 2_{1}^{+} \rangle \langle 2_{1}^{+} E2 2_{1}^{+} \rangle \langle 0_{2}^{+} E2 2_{1}^{+} \rangle \langle 0_{2}^{+} E2 2_{1}^{+} \rangle \langle 2_{1}^{+} E2 2_{2}^{+} \rangle \langle 2_{2}^{+} E2 0_{2}^{+} \rangle $	-0.008 -0.09 -0.31
	$Total \langle 0_{2}^{+} E2 2_{1}^{+} \rangle \langle 2_{1}^{+} E2 2_{1}^{+} \rangle \langle 0_{2}^{+} E2 2_{1}^{+} \rangle \\ \langle 0_{2}^{+} E2 2_{1}^{+} \rangle \langle 2_{1}^{+} E2 2_{2}^{+} \rangle \langle 2_{2}^{+} E2 0_{2}^{+} \rangle \\ \langle 0_{2}^{+} E2 2_{1}^{+} \rangle \langle 2_{1}^{+} E2 2_{3}^{+} \rangle \langle 2_{3}^{+} E2 0_{2}^{+} \rangle $	-0.008 -0.09 -0.31 -0.04
0+	$Total \langle 0_{2}^{+} E2 2_{1}^{+} \rangle \langle 2_{1}^{+} E2 2_{1}^{+} \rangle \langle 0_{2}^{+} E2 2_{1}^{+} \rangle \\ \langle 0_{2}^{+} E2 2_{1}^{+} \rangle \langle 2_{1}^{+} E2 2_{2}^{+} \rangle \langle 2_{2}^{+} E2 0_{2}^{+} \rangle \\ \langle 0_{2}^{+} E2 2_{1}^{+} \rangle \langle 2_{1}^{+} E2 2_{3}^{+} \rangle \langle 2_{3}^{+} E2 0_{2}^{+} \rangle \\ \langle 0_{2}^{+} E2 2_{2}^{+} \rangle \langle 2_{2}^{+} E2 2_{2}^{+} \rangle \langle 2_{2}^{+} E2 0_{2}^{+} \rangle $	-0.008 -0.09 -0.31 -0.04 0.12
0^+_2	$Total \langle 0_{2}^{+} E2 2_{1}^{+} \rangle \langle 2_{1}^{+} E2 2_{1}^{+} \rangle \langle 0_{2}^{+} E2 2_{1}^{+} \rangle \\ \langle 0_{2}^{+} E2 2_{1}^{+} \rangle \langle 2_{1}^{+} E2 2_{2}^{+} \rangle \langle 2_{2}^{+} E2 0_{2}^{+} \rangle \\ \langle 0_{2}^{+} E2 2_{1}^{+} \rangle \langle 2_{1}^{+} E2 2_{3}^{+} \rangle \langle 2_{3}^{+} E2 0_{2}^{+} \rangle \\ \langle 0_{2}^{+} E2 2_{2}^{+} \rangle \langle 2_{2}^{+} E2 2_{2}^{+} \rangle \langle 2_{2}^{+} E2 0_{2}^{+} \rangle \\ \langle 0_{2}^{+} E2 2_{2}^{+} \rangle \langle 2_{2}^{+} E2 2_{3}^{+} \rangle \langle 2_{3}^{+} E2 0_{2}^{+} \rangle \\ \langle 0_{2}^{+} E2 2_{2}^{+} \rangle \langle 2_{2}^{+} E2 2_{3}^{+} \rangle \langle 2_{3}^{+} E2 0_{2}^{+} \rangle $	-0.008 -0.09 -0.31 -0.04 0.12 -0.13
0_2^+	$Total \langle 0_{2}^{+} E2 2_{1}^{+}\rangle\langle 2_{1}^{+} E2 2_{1}^{+}\rangle\langle 0_{2}^{+} E2 2_{1}^{+}\rangle \\ \langle 0_{2}^{+} E2 2_{1}^{+}\rangle\langle 2_{1}^{+} E2 2_{2}^{+}\rangle\langle 2_{2}^{+} E2 0_{2}^{+}\rangle \\ \langle 0_{2}^{+} E2 2_{1}^{+}\rangle\langle 2_{1}^{+} E2 2_{3}^{+}\rangle\langle 2_{3}^{+} E2 0_{2}^{+}\rangle \\ \langle 0_{2}^{+} E2 2_{2}^{+}\rangle\langle 2_{2}^{+} E2 2_{2}^{+}\rangle\langle 2_{2}^{+} E2 0_{2}^{+}\rangle \\ \langle 0_{2}^{+} E2 2_{2}^{+}\rangle\langle 2_{2}^{+} E2 2_{3}^{+}\rangle\langle 2_{3}^{+} E2 0_{2}^{+}\rangle \\ \langle 0_{2}^{+} E2 2_{3}^{+}\rangle\langle 2_{3}^{+} E2 2_{3}^{+}\rangle\langle 2_{3}^{+} E2 0_{2}^{+}\rangle \\ \langle 0_{2}^{+} E2 2_{3}^{+}\rangle\langle 2_{3}^{+} E2 2_{3}^{+}\rangle\langle 2_{3}^{+} E2 0_{2}^{+}\rangle $	-0.008 -0.09 -0.31 -0.04 0.12 -0.13 -0.06
02+	$Total \langle 0_{2}^{+} E2 2_{1}^{+} \rangle \langle 2_{1}^{+} E2 2_{1}^{+} \rangle \langle 0_{2}^{+} E2 2_{1}^{+} \rangle \\ \langle 0_{2}^{+} E2 2_{1}^{+} \rangle \langle 2_{1}^{+} E2 2_{2}^{+} \rangle \langle 2_{2}^{+} E2 0_{2}^{+} \rangle \\ \langle 0_{2}^{+} E2 2_{1}^{+} \rangle \langle 2_{1}^{+} E2 2_{3}^{+} \rangle \langle 2_{3}^{+} E2 0_{2}^{+} \rangle \\ \langle 0_{2}^{+} E2 2_{2}^{+} \rangle \langle 2_{2}^{+} E2 2_{2}^{+} \rangle \langle 2_{2}^{+} E2 0_{2}^{+} \rangle \\ \langle 0_{2}^{+} E2 2_{2}^{+} \rangle \langle 2_{2}^{+} E2 2_{3}^{+} \rangle \langle 2_{3}^{+} E2 0_{2}^{+} \rangle \\ \langle 0_{2}^{+} E2 2_{3}^{+} \rangle \langle 2_{3}^{+} E2 2_{3}^{+} \rangle \langle 2_{3}^{+} E2 0_{2}^{+} \rangle \\ \langle 0_{2}^{+} E2 2_{3}^{+} \rangle \langle 2_{3}^{+} E2 2_{3}^{+} \rangle \langle 2_{3}^{+} E2 0_{2}^{+} \rangle $	-0.008 -0.09 -0.31 -0.04 0.12 -0.13 -0.06

0⁺₁

Quadrupole shape parameters of ^{96,98,100}Mo

<Q²> is a measure of an overall deformation (analogous to Bohr's β) <cos(3 δ)> is a measure of triaxiality (analogous to Bohr's γ)

Quadrupole deformation parameters of ¹⁰⁰Mo: exp vs theory

General quadrupole collective Bohr Hamiltonian calculations (L. Próchniak Int. J. Mod. Phys. E19 (2010) 705, L. Próchniak, S. G. Rohoziński, J. Phys. G: Nucl. Part. 36 (2009) 123101)

GBH calculations with the **SLy4** variant of Skyrme interaction indicate **better agreement** with experimentally obtained quadrupole deformation parameters.

L. Próchniak Int. J. Mod. Phys. E19 (2010) 705

Conclusions:

Having the experimental magnitudes and signs of the E2 matrix elements, the expectation values of quadrupole invariants <Q²> and <Q³cos(3δ)> for a given state may by calculated.

 Quadrupole shape parameters of the two lowest 0⁺ states in ^{96,98,100}Mo nuclei were inferred from Coulomb excitation data in a nuclear model independent way (Quadrupole Sum Rules method).

• The overall deformation of 96,98,100 Mo in the 0⁺ states increases with the neutron number. The overall deformation of 100 Mo in the 0⁺ states shows inverse trend than in 96 Mo – 0⁺_{gs} state of 100 Mo is less deformed than 0⁺_{exc} one. The shape of ${}^{96-100}$ Mo changes **from triaxial** (the 0⁺_{gs} state) to the **prolate** one (the 0⁺_{exc} state).

• **GBH** calculations with the **SLy4** variant of Skyrme interaction lead to **better agreement** with experimentally obtained quadrupole deformation parameters.

FUTURE PLANS:

What is the evolution of the deformation of low-lying 0⁺ states in more neutron-rich Mo isotopes ?

Collaboration:

K. Wrzosek-Lipska^a, M. Zielińska^a, K. Hadyńska-Klęk^{a,b}, J. Iwanicki, M. Kisieliński^a,

M. Kowalczyk^{a,b}, P. J. Napiorkowski^a, L. Pieńkowski^a, D. Piętak^a, J. Srebrny^a

^a Heavy Ion Laboratory, University of Warsaw, Poland ^b Institute of Experimental Physics , University of Warsaw, Poland

L. Próchniak, K. Zając

Maria Curie-Skłodowska University, Lublin, Poland

Y. Toh^c, M. Oshima^c, A. Osa^c, Y. Utsuno^c, Y. Hatsukawa^c, J. Katakura^c,

M. Koizumi^c, M. Matsuda^c, T. Shizuma^c, M. Sugawara^d, T. Morikawa^e, H. Kusakari^f

^c Japan Atomic Energy Research Institute, Tokai, Ibaraki, Japan
 ^d Chiba Institute of Technology, Narashino, Chiba, Japan
 ^e Kyushu University, Hakozaki, Fukuoka, Japan
 ^f Chiba University, Inage-ku, Chiba, Japan