Covariant density functional theory in finite nuclei: microscopic theory of quantum phase transistions

Kazimierz Dolny, Sept. 23, 2010

Peter Ring

Technical University Munich

Content:

New density functionals

- point coupling models
- δ-meson
- tensor forces
- separable-pairing forces

Static applications

- Fission barriers

time-dependent density functional theory

- continuum RPA
- GMR in superfluid nuclei
- pygmy modes

energy dependent kernels:

- level densities
- width of giant resonances

spectroscopy with density functionals

- projection and configuration mixing
- quantum phase transitions
 - Kazimierz Dolny, Sept. 2010

Density functional theory in nuclei:

• In nuclei DFT has been introduced by **effective Hamiltonians**:

$$E = \langle \Psi | H | \Psi \rangle \approx \langle \Phi | \hat{H}_{eff}(\hat{\rho}) | \Phi \rangle = E[\hat{\rho}]$$

Skyrme Gogny Rel. MF

- More degrees of freedom: **spin**, **isospin**, **relativistic**, **pairing**
- Nuclei are **self-bound systems**.

The exact density is a constant. $\rho(r) = const$ Hohenberg-Kohn theorem is true, but useless $\rho(r)$ has to be replaced by the intrinsic density:

$$\rho_I(\vec{r}) = \rho(\vec{r} + \vec{R}_{CM}) \quad \text{with} \quad \vec{R}_{CM} = \frac{1}{A} \sum_i \vec{r}_i$$

 Density functional theory in nuclei is probably not exact, but a very good approximation.

Why covariant:

- 1) Large spin-orbit splitting in nuclei
- 2) Large fields V≈350 MeV , S≈-400 MeV
- 3) Success of Relativistic Brueckner
- 4) Success of intermediate energy proton scattering
- 5) relativistic saturation mechanism
- 6) consistent treatment of time-odd fields
- 7) Pseudo-spin Symmetry
- 8) Connection to underlying theories ?
- 9) As many symmetries as possible

time-odd fields:

- rotations
- SD bands, magnetic rotation
- odd-mass nuclei magnetic moments
- magnetars:

see poster by Pena et al

Walecka model:

- the basis is an effective Lagrangian with all relativistic symmetries
- it is used in a mean field concept (Hartree-level)
- with the no-sea approximation

Effective density dependence:

The basic idea comes from ab initio calculations density dependent coupling constants include Brueckner correlations and threebody forces

Manakos and Mannel, Z.Phys. 330 , 223 (1988)		
Bürvenich, Madland, Maruhn, Reinhard, PRC 65, 044308 (2002):	PC-F1,	PC-PK1
Niksic, Vretenar, P.R., PRC 78, 034318 (2008):	DD-PC1	

Comparision with ab initio calculations:

DD-PC1

point coupling model is fitted to microscopic nuclear matter:

Inclusion of the δ -meson (J=0, T=1) by fit to Rel. Brueckner Calculations:

iso-vector effective mass

equation of state

Roca-Maza, Centelles, Vinas, P.R., Schuck (2010)

Symmetry energy:

pressure at high densities

effective pairing forces:

seniority force: constant G zero range; δ-force

pairing part of Gogny D1S Gonzales-Llarena et al, PLB 379, 13 (1996)

Gogny equivalent separable force: Tian, Ma, P.R. PLB 676, 44 (2009)

nucl. matter:

$$\int_{a}^{b} \int_{a}^{b} \int_{a}^{b}$$

Influence of pairing on the fission barriers:

- fission barriers depend senitively on the strength of the pairing force
- for δ-pairing with identical ground state gap the barrier height depends on the cut-off energy

(Karatzikos et al, PLB 689, 72 (2010)

Fission barriers for triaxially deformed shapes:

Time dependent density functional theory:

$$\int dt \left\{ \langle \Phi(t) | i \partial_t | \Phi(t) \rangle - E_t[\rho(t)] \right\} = 0$$

Runge-Gross theorem PRL 52, 997 (1984)

$$i\partial_t \hat{\rho} = \left[\hat{h}(\hat{\rho}) + \hat{f}, \hat{\rho}\right]$$

$$i\partial_t \psi(t) = \left[\left(\vec{\alpha} (\vec{p} - \vec{V}(t)) + V(t) + \beta (m - S(t)) \right] \psi(t) \right]$$

We neglect retardation and find for the fields at each time-step:

r

J

$$S(t) = G_{\sigma}\rho_s(t)$$
$$V(t) = G_{\omega}\rho(t)$$
$$\vec{V}(t) = G_{\omega}\vec{j}(t)$$

and similar equations for the isovector and electromagnetic-fields

Energy dependent kernel: particle-vibr. coupling

Density functional theory - Landau-Migdal theory

Distribution of single-particle strength in ²⁰⁹Bi

Single particle spectrum in the Pb region:

Width of Giant Resonances:

The full response contains energy dependent parts coming from vibrational couplings.

Litvinova, P.R. Tselyaev, PRC 75, 64308 (2007)

Parameters of Lorentz distribution* (GDR)

		<E $>$ (MeV)	Γ (MeV)	EWSR (%)
	RRPA	12.9	2.0	128
	RPA-PC	13.7	4.3	134
	Exp. $[1]$	13.4	4.1	
	RRPA	14.5	2.6	126
132Sn R	RPA-PC	15.1	4.4	131
I I I I I I I I I I I I I I I I I I I	Exp. $[2]$	16.1(7)	4.7(2.1)	
48.11	RRPA	17.9	3.1	119
	RPA-PC	18.6	5.1	125
4650	RRPA	17.9	3.2	122
R	RPA-PC	18.7	5.5	128

*Averaging interval: 0-30 MeV

[1] Reference Input Parameter Library, Version 2

[2] Adrich et al., PRL **95**, 132501 (2005).

Quantum phase transitions and critical symmetries:

Quantum phase transitions in the Interacting boson model:

$$b_{c}^{\dagger} = (1+\beta^{2})^{-1/2} [\beta \cos \gamma d_{0}^{\dagger} + \beta \sin \gamma (d_{2}^{\dagger} + d_{-2}^{\dagger})/\sqrt{2} + s^{\dagger}]$$

E(5): F. lachello, PRL 85, 3580 (2000) X(5): F. lachello, PRL 87, 52502 (2001) Can a universal density functional, adjusted to ground state properties, at the same time reproduce critical phenomena in spectra ?

We need a method to derive spectra: GCM, ATDRMF

We consider the chain of Ne-isotopes with a phase transition from spherical (U(5)) to axially deformed (SU(3))

Constraint Hartree Fock produces wave functions depending on a generator coordinate q $\left|\Psi\right\rangle = \int dq f(q) \left|q\right\rangle$

GCM wave function is a superposition of Slater determinants

Hill-Wheeler equation:

$$\int dq' \left[\left\langle q | H | q' \right\rangle - E \left\langle q | q' \right\rangle \right] f(q') = 0$$

$$\left|\Psi\right\rangle = \int dq f(q) \hat{P}^{N} \hat{P}^{I} \left|q\right\rangle$$

with projection:

Self-consistent RMF plus Lipkin-Nogami BCS binding energy curves of ¹⁴²⁻¹⁵²Nd, as functions of the mass quadrupole moment.

GCM: only one scale parameter: X(5): two scale parameters: $E(2_1)$ $E(2_1), BE2(2_2 \rightarrow 0_1)$

Problem of GCM at this level:

restricted to γ=0

B(E2; L \rightarrow L-2) values and excitation energies for the yrast states: ¹⁴⁸Nd, ¹⁵⁰Nd, and ¹⁵²Nd, calculated with the GCM and compared with those predicted by the X(5), SU(3) and U(5) symmetries.

29

Kazimierz Dolny, Sept. 2010

1) triaxial degrees of freedom with three-dimensional projection:

see talk of J.-M. Yao (Saturday)

2) derivation of a Bohr Hamiltonian in 5 dimensions:

see talk of Z.-P. Li (Saturday)

3) Variation after projection (time odd components)

4) pairing as a collective degree of freedom (0⁺)

Summary and Conclusions:

New functionals

- less phenomenological,
- better pairing

For excited states we need energy dependent kernel

- higher level density
- quantitative description of the width of Giant Resonances

GCM calculations for spectra in transitional nuclei

- J+N projection is important,
- triaxial calculations so only for very light nuclei possible
- microscopic theory of quantum phase transitions

Derivation of a collective Hamiltonian

- allows triaxial calculations
- nuclear spectroscopy based on density functionals
- open question of inertia parameters

The microscopic framework based on universal density functionals provides a consistent and (nearly) parameter free description of quantum phase transitions

Collaborators:

T. Niksic, N. Paar, D. Vretenar (Zagreb)

I. Daoutidis, S. Karatzikos, G. A. Lalazissis (Thessaloniki)

H. Abusara, A. Afanasjev (Mississippi)

D. Pena, E. Khan, P. Schuck (Orsay)

X. Roca-Maza, C. Centelles, X. Vinas, (Barcelona)

E. Litvinova (GSI), V. Tselyaev (St. Petersburg)

L. Prochniak (Lublin)

Z.-P. Li, J.-M. Yao (Chongqing), W.-H. Long (Lanzhou) J. Meng (Beijing) Y. Tian, Z.-Y. Ma (CIAE, Beijing)