EXOTIC NUCLEAR FORCES STUDIED WITHIN THE MEAN FIELD THEORY

H. MOLIQUE, J. DUDEK and K. RYBAK

IPHC/DRS and Université de Strasbourg

INTRODUCTION

* Since the early days, the concept of mean field has been very succesful in nuclear structure physics.
* We propose a method combining the non self-consistent mean-field part with self-consistent extra terms such as the spin-orbit, the anti-symmetric spin-orbit, the tensor force...
* Our approach is based on a minimal number of parameters describing the form factors of the forces, in order to increase the predictive power.

GENERAL TWO-BODY INTERACTION

When looking for possible nucleon-nucleon interactions one usually adopts the following postulates (Eisenbud and Wigner; Okubo and Marshak) for the two-body potential :
^ Invariance with respect to particle exchange.

* Invariance with respect to spatial translations.
* Invariance with respect to spatial rotations.
« Invariance with respect to rotations in isospace.
^ Galilean invariance.
* Hermiticity.

夫 Invariance with respect to inversions.
夫 Invariance with respect to time-reversal.

SPIN-TENSOR DECOMPOSITION

* In the fermionic spin-1/2 space, any operator can be expressed with the help of $\sigma_{0} \equiv \mathbb{I}$ and the Pauli matrices σ_{x}, σ_{y} and σ_{z}.
* Therefore, the space of two nucleons can be described by a set of $4 \times 4=16$ operators composed of the tensor product of the corresponding operators for each particle, as e.g. $\sigma_{i}^{a} \sigma_{j}^{b}$, with $i=0,1,2,3$ and $j=0,1,2,3$.
* We require the interaction to be independent of the interchange between the two particles, and therefore we use the 6 irreducible tensors (Conze, Feldmeier, Manakos) :

$$
\begin{gathered}
S_{1}^{(0)}=1, \quad S_{2}^{(2)}=\left[\vec{\sigma}^{a} \times \vec{\sigma}^{b}\right]^{(0)}, \quad S_{3}^{(1)}=\vec{\sigma}^{a}+\vec{\sigma}^{b} \\
S_{4}^{(2)}=\left[\vec{\sigma}^{a} \times \vec{\sigma}^{b}\right]^{(2)}, \quad S_{5}^{(1)}=\left[\vec{\sigma}^{a} \times \vec{\sigma}^{b}\right]^{(1)}, \quad S_{6}^{(1)}=\vec{\sigma}^{a}-\vec{\sigma}^{b} .
\end{gathered}
$$

Advantage : These 6 tensors $S_{\mu}^{(k)}$ of rank k can immediately be coupled with a tensor operator of the same rank in configuration space $\boldsymbol{X}_{\mu}^{(k)}$ to a scalar and the so obtained scalar functions finally summed to the general scalar (i.e. invariant with respect to spatial rotations) two-particle interaction ($\boldsymbol{P}_{\boldsymbol{T}=0}$ and $\boldsymbol{P}_{\boldsymbol{T}=1}$ are projectors on the states $T=0$ and $T=1$):

$$
V(a, b)=\sum_{\mu=1}^{6}\left\{\left[X_{\mu}^{(k)} \times S_{\mu}^{(k)}\right]^{(0)} P_{T=0}+\left[Y_{\mu}^{(k)} \times S_{\mu}^{(k)}\right]^{(0)} P_{T=1}\right\}
$$

SYMMETRY CONSIDERATIONS

\star We demand $V(a, b)$ to be symmetric with respect to particle permutation.
\star The combinations $S_{1}, S_{2}, S_{3}, S_{4}$ are symmetric with respect to the interchange of the spins of the particles, and therefore the corresponding tensors $\boldsymbol{X}_{1}, \boldsymbol{X}_{2}, \boldsymbol{X}_{3}, \boldsymbol{X}_{4}$ and $\boldsymbol{Y}_{1}, \boldsymbol{Y}_{2}, \boldsymbol{Y}_{3}, \boldsymbol{Y}_{4}$ will have to be symmetric.
\star The combinations S_{5}, S_{6} are anti-symmetric with respect to the interchange of the spins of the particles, and therefore the corresponding tensors $\boldsymbol{X}_{5}, \boldsymbol{X}_{6}$ and $\boldsymbol{Y}_{5}, \boldsymbol{Y}_{6}$ will have to be anti-symmetric.

ANTI-SYMMETRIC SPIN-ORBIT

* The last possibility corresponds to the ALS (anti-symmetric spin-orbit) part of the interaction.
* It violates the principle of invariance of the interaction with respect to the relative parity of two nucleons, and is therefore in principle not allowed.
* However, this is true for the free interaction, but not really necessary in effective interactions (Conze, Feldmeier, Manakos).

HARTREE-FOCK FORMALISM

^ Many-body hamiltonian :

$$
\hat{H}=\sum_{\alpha \beta}\langle\alpha| \hat{t}|\beta\rangle a_{\alpha}^{\dagger} a_{\beta}+\frac{1}{2} \sum_{\alpha \beta \gamma \delta}\langle\alpha \beta| \hat{V}|\gamma \delta\rangle a_{\alpha}^{\dagger} a_{\beta}^{\dagger} a_{\delta} a_{\gamma}
$$

* Hartree-Fock ground state of the system of A particles :

$$
|\Phi\rangle=\prod_{\mu=1}^{A} a_{\mu}^{\dagger}|0\rangle
$$

* Hartree-Fock equations :

$$
\langle\alpha| \hat{h}_{H F}|\beta\rangle \equiv\langle\alpha| \hat{t}+\hat{U}_{H F}|\beta\rangle=\varepsilon_{\alpha} \delta_{\alpha \beta}
$$

* Hartree-Fock potential :

$$
\langle\alpha| \hat{U}_{H F}|\beta\rangle \equiv \sum_{\mu=1}^{A}\langle\alpha \mu| \hat{V}|\widetilde{\beta \mu}\rangle=\sum_{\mu=1}^{A}[\langle\alpha \mu| \hat{V}|\beta \mu\rangle-\langle\alpha \mu| \hat{V}|\mu \beta\rangle]
$$

INTEGRO-DIFFERENTIAL FORM

* The HF equations can be written as a system of integro-differential equations

$$
-\frac{\hbar^{2}}{2 m} \Delta \phi_{i}(q)+\int d q^{\prime} \sum_{\mu=1}^{A} \phi_{\mu}^{*}\left(q^{\prime}\right)\left\langle q ; q^{\prime}\right| \hat{V}|\widetilde{i ; \mu}\rangle=\varepsilon_{i} \phi_{i}(q)
$$

* In the Hartree approximation one has

$$
-\frac{\hbar^{2}}{2 m} \Delta \phi_{i}(\vec{r} \sigma)+\langle\vec{r} \sigma| \hat{U}_{H}|i\rangle=\varepsilon_{i} \phi_{i}(\vec{r} \sigma)
$$

where

$$
\langle\vec{r} \sigma| \hat{U}_{H}|i\rangle=\int d^{3} \vec{r}^{\prime} \sum_{\sigma^{\prime}} \sum_{\mu=1}^{A} \phi_{\mu}^{*}\left(\vec{r}^{\prime} \sigma^{\prime}\right)\left\langle\vec{r} \sigma ; \vec{r}^{\prime} \sigma^{\prime}\right| \hat{V}|i ; \mu\rangle
$$

MATRIX FORM OF THE HARTREE EQUATIONS

夫 Introduce a single-particle basis $|i\rangle,|j\rangle,|k\rangle,|l\rangle \ldots$, and the coefficients $c_{i}^{\alpha} \equiv\langle\boldsymbol{i} \mid \boldsymbol{\alpha}\rangle$.
« Introducing closure relations one gets the matrix relation :

$$
\sum_{k}(H)_{i k} c_{k}^{\alpha}=\varepsilon_{\alpha} c_{i}^{\alpha}
$$

\star where :

$$
(H)_{i k} \equiv\langle i| \hat{t}|k\rangle+\sum_{j l}\langle i j| \hat{V}|k l\rangle d_{j l}
$$

* and :

$$
d_{j l} \equiv \sum_{\mu \text { occ. }} c_{j}^{\mu *} c_{l}^{\mu}
$$

PARTICULARITY OF THE METHOD

* The particularity of the method is that the interaction is split into a non self-consistent part (Woods-Saxon), and terms treated self-consistently (spin-orbit...).
* Advantage: Woods-Saxon potential well under control, especially when it comes to extrapolations to large numbers of particles in the system.
* Goal: compare non self-consistent and self-consistent treatment of "well known" interactions like the spin-orbit, and also more "exotic" terms like the anti-symmetric spin-orbit interaction.

CHOICE OF THE S.P. BASIS

* Three-dimensional harmonic-oscillator eigenfunctions

$$
\varphi_{n, m_{s}}(\vec{r} \sigma) \equiv\left\langle\vec{r} \sigma \mid n, m_{s}\right\rangle=\varphi_{n_{x}}(x) \varphi_{n_{y}}(y) \varphi_{n_{z}}(z) \chi_{m_{s}}(\sigma)
$$

where

$$
\varphi_{n_{\mu}}\left(x_{\mu}\right)=\left\langle x_{\mu} \mid n_{\mu}\right\rangle=\frac{\sqrt{\boldsymbol{\beta}_{\mu}}}{\sqrt{2^{n_{\mu}} n_{\mu}!\sqrt{\pi}}} e^{-\frac{\beta_{\mu}^{2} x_{\mu}^{2}}{2}} H_{n_{\mu}}\left(\boldsymbol{\beta}_{\mu} x_{\mu}\right)
$$

* The actual basis used is :

$$
|n+\rangle \equiv \sum_{\sigma} \alpha_{n \sigma}|n, \sigma\rangle \quad \text { and } \quad|n-\rangle \equiv \sum_{\sigma} \beta_{n \sigma}|n, \sigma\rangle
$$

* Advantage: hamiltonian matrix $H_{i k}$ may be bloc-diagonal.

MATRIX ELEMENTS OF THE INTERACTION

For instance we have

$$
\begin{aligned}
& \left\langle n+, n^{\prime}+\right| \hat{V}\left|m+, m^{\prime}+\right\rangle \\
& =\sum_{\sigma, \sigma^{\prime}, \kappa, \kappa^{\prime}} \alpha_{n \sigma^{*}} \alpha_{n^{\prime} \sigma^{\prime}}^{*}\left\langle n \sigma ; n^{\prime} \sigma^{\prime}\right| \hat{V}\left|m \kappa ; m^{\prime} \kappa^{\prime}\right\rangle \alpha_{m \kappa} \alpha_{m^{\prime} \kappa^{\prime}}
\end{aligned}
$$

and therefore the problem consists in evaluating the bracket

$$
\left\langle n \sigma ; n^{\prime} \sigma^{\prime}\right| \hat{V}\left|m \kappa ; m^{\prime} \kappa^{\prime}\right\rangle
$$

MATRIX ELEMENTS OF THE INTERACTION

The last matrix element is in turn evaluated by the introduction of the closure relation

$$
\mathbb{I}=\iint d^{3} \vec{r} d^{3} \vec{r}^{\prime} \sum_{S} \sum_{S^{\prime}}\left|\vec{r} S ; \vec{r}^{\prime} S^{\prime}\right\rangle\left\langle\vec{r} S ; \vec{r}^{\prime} S^{\prime}\right|
$$

wherefrom finally

$$
\begin{aligned}
& \left\langle n \sigma ; n^{\prime} \sigma^{\prime}\right| \hat{V}\left|m \kappa ; m^{\prime} \kappa^{\prime}\right\rangle \\
& =\iint d^{3} \vec{r} d^{3} \vec{r}^{\prime} \sum_{S} \sum_{S^{\prime}}\left\langle n \sigma ; n^{\prime} \sigma^{\prime} \mid \vec{r} S ; \vec{r}^{\prime} S^{\prime}\right\rangle\left\langle\vec{r} S ; \vec{r}^{\prime} S^{\prime}\right| \hat{V}\left|m \kappa ; m^{\prime} \kappa^{\prime}\right\rangle
\end{aligned}
$$

THE CASE OF THE SPIN-ORBIT

\star Has been introduced in the mean-field to reproduce the correct magic numbers.

* Origin has been intensively discussed.
* There was early evidence that it should stem from the nucleon-nucleon spin-orbit part (Brueckner, Lockett, Rotenberg 1961; Barrett 1967)
\star Relativistic effect (Thomas term) too small by an order of magnitude.
* Correct spin-orbit term in the s.p. potential can be obtained from a relativistic HF calculation with OBEP (Brockmann 1978); \rightarrow exchange of ω-bosons.
\star Easy description within the context of RMF theory.

FORM FACTOR OF THE SPIN-ORBIT

* In the context of mean-field calculations (Woods-Saxon...) sometimes very intuitive arguments are given to justify the form factors used.
^ Bohr-Mottelson: The spin-orbit coupling is of necessity a surface term since, in a region of constant density, the only direction with local significance is that of the particle motion and, thus, it is impossible to define a pseudovector that can be coupled to the nuclear spin. In the surface region, however, the density gradient defines the radial direction and makes it possible to introduce a local potential of the form

$$
V_{L S} \propto \nabla \rho(r) \wedge \vec{p} \cdot \vec{s}=\hbar^{-1}(\vec{l} \cdot \vec{s}) \frac{1}{r} \frac{\partial \rho(r)}{\partial r}
$$

* A justification for the form factor can be found in the textbook by W. Horniak 1975.

SPIN-ORBIT POTENTIAL

* Consider the nucleon-nucleon spin-orbit interaction

$$
\hat{V}^{S O}=J\left(\left|\vec{r}-\vec{r}^{\prime}\right|\right)\left(\vec{r}-\vec{r}^{\prime}\right) \wedge\left(\vec{p}-\vec{p}^{\prime}\right) \cdot\left(\vec{\sigma}+\vec{\sigma}^{\prime}\right)
$$

* In the Hartree equations one has to evaluate

$$
\langle\vec{r} \sigma| \hat{U}_{H}^{\mathrm{SO}}|i\rangle=\int d^{3} \vec{r}^{\prime} \sum_{\sigma^{\prime}} \sum_{\mu=1}^{A} \phi_{\mu}^{*}\left(\vec{r}^{\prime} \sigma^{\prime}\right)\left\langle\vec{r} \sigma ; \vec{r}^{\prime} \sigma^{\prime}\right| \hat{V}^{\mathrm{SO}}|i ; \mu\rangle
$$

SPIN-ORBIT POTENTIAL

This can be done for all the 8 following terms separately :

$$
\begin{array}{rlll}
J\left(\left|\vec{r}-\vec{r}^{\prime}\right|\right)\left(\vec{r}-\vec{r}^{\prime}\right) \wedge\left(\vec{p}-\vec{p}^{\prime}\right) \cdot\left(\vec{\sigma}+\vec{\sigma}^{\prime}\right) & = & J\left(\left|\vec{r}-\vec{r}^{\prime}\right|\right)(\vec{r} \wedge \vec{p}) \cdot \vec{\sigma} & \rightarrow \hat{T}_{1} \\
& - & J\left(\left|\vec{r}-\vec{r}^{\prime}\right|\right)\left(\vec{r}^{\prime} \wedge \vec{p}\right) \cdot \vec{\sigma} & \rightarrow \hat{T}_{2} \\
& - & J\left(\left|\vec{r}-\vec{r}^{\prime}\right|\right)\left(\vec{r} \wedge \vec{p}^{\prime}\right) \cdot \vec{\sigma} & \rightarrow \hat{T}_{3} \\
& + & J\left(\left|\vec{r}-\vec{r}^{\prime}\right|\right)\left(\vec{r}^{\prime} \wedge \vec{p}^{\prime}\right) \cdot \vec{\sigma} & \rightarrow \hat{T}_{4} \\
& + & J\left(\left|\vec{r}-\vec{r}^{\prime}\right|\right)(\vec{r} \wedge \vec{p}) \cdot \vec{\sigma}^{\prime} & \rightarrow \hat{T}_{5} \\
& - & J\left(\left|\vec{r}-\vec{r}^{\prime}\right|\right)\left(\vec{r}^{\prime} \wedge \vec{p}\right) \cdot \vec{\sigma}^{\prime} & \rightarrow \hat{T}_{6} \\
& - & J\left(\left|\vec{r}-\vec{r}^{\prime}\right|\right)\left(\vec{r} \wedge \vec{p}^{\prime}\right) \cdot \vec{\sigma}^{\prime} & \rightarrow \hat{T}_{7} \\
& +\quad J\left(\left|\vec{r}-\vec{r}^{\prime}\right|\right)\left(\vec{r}^{\prime} \wedge \vec{p}^{\prime}\right) \cdot \vec{\sigma}^{\prime} & \rightarrow \hat{T}_{8}
\end{array}
$$

EXPLICIT EXPRESSIONS

$$
\begin{aligned}
& \langle\vec{r} \sigma| \hat{T}_{1}|i\rangle=\left[\int d^{3} \vec{r}^{\prime} J\left(\left|\vec{r}-\vec{r}^{\prime}\right|\right) \rho\left(\vec{r}^{\prime}\right)\right] \vec{l} \cdot \vec{\sigma} \phi_{i}(\vec{r} \sigma) \\
& \langle\vec{r} \sigma| \hat{T}_{2}|i\rangle=\left[\int d^{3} \vec{r}^{\prime} J\left(\left|\vec{r}-\vec{r}^{\prime}\right|\right)\left(-\vec{r}^{\prime}\right) \sum_{\sigma^{\prime}} \sum_{\mu=1}^{A} \phi_{\mu}^{*}\left(\vec{r}^{\prime} \sigma^{\prime}\right) \phi_{\mu}\left(\vec{r}^{\prime} \sigma^{\prime}\right)\right] \wedge \vec{p} \cdot \vec{\sigma} \phi_{i}(\vec{r} \sigma) \\
& \langle\vec{r} \sigma| \hat{\mathbb{T}}_{3}|i\rangle=\left[\int d^{3} \vec{r}^{\prime} J\left(\left|\vec{r}-\vec{r}^{\prime}\right|\right) \sum_{\sigma^{\prime}} \sum_{\mu=1}^{A} \phi_{\mu}^{*}\left(\vec{r}^{\prime} \sigma^{\prime}\right)\left(-\vec{r}^{\prime}\right) \phi_{\mu}\left(\vec{r}^{\prime} \sigma^{\prime}\right)\right] \cdot(\vec{r} \wedge \vec{\sigma}) \phi_{i}(\vec{r} \sigma) \\
& \langle\vec{r} \sigma| \hat{r}_{4}|i\rangle=\left[\int d^{3} \vec{r}^{\prime} J\left(\left|\vec{r}-\vec{r}^{\prime}\right|\right) \sum_{\sigma^{\prime}} \sum_{\mu=1}^{A} \phi_{\mu}^{*}\left(\vec{r}^{\prime} \sigma^{\prime}\right) \vec{l}^{\prime} \phi_{\mu}\left(\vec{r}^{\prime} \sigma^{\prime}\right)\right] \cdot \vec{\sigma} \phi_{i}(\vec{r} \sigma)
\end{aligned}
$$

EXPLICIT EXPRESSIONS

$$
\begin{aligned}
& \langle\vec{r} \sigma| \hat{T}_{5}|i\rangle=\left[\int d^{3} \vec{r}^{\prime} J\left(\left|\vec{r}-\vec{r}^{\prime}\right|\right) \sum_{\sigma^{\prime}} \sum_{\mu=1}^{A} \phi_{\mu}^{*}\left(\vec{r}^{\prime} \sigma^{\prime}\right) \vec{\sigma}^{\prime} \phi_{\mu}\left(\vec{r}^{\prime} \sigma^{\prime}\right)\right] \cdot \vec{l} \phi_{i}(\vec{r} \sigma) \\
& \langle\vec{r} \sigma| \hat{T}_{6}|i\rangle=\left[\int d^{3} \vec{r}^{\prime} J\left(\left|\vec{r}-\vec{r}^{\prime}\right|\right) \sum_{\sigma^{\prime}} \sum_{\mu=1}^{A} \phi_{\mu}^{*}\left(\vec{r}^{\prime} \sigma^{\prime}\right)\left(-\vec{r}^{\prime} \wedge \vec{\sigma}^{\prime}\right) \phi_{\mu}\left(\vec{r}^{\prime} \sigma^{\prime}\right)\right] \cdot \vec{p} \phi_{i}(\vec{r} \sigma) \\
& \langle\vec{r} \sigma| \hat{T}_{7}|i\rangle=\left[\int d^{3} \vec{r}^{\prime} J\left(\left|\vec{r}-\vec{r}^{\prime}\right|\right) \sum_{\sigma^{\prime}} \sum_{\mu=1}^{A} \phi_{\mu}^{*}\left(\vec{r}^{\prime} \sigma^{\prime}\right)\left(-\vec{r}^{\prime} \wedge \vec{\sigma}^{\prime}\right) \phi_{\mu}\left(\vec{r}^{\prime} \sigma^{\prime}\right)\right] \cdot \vec{r} \phi_{i}(\vec{r} \sigma) \\
& \langle\vec{r} \sigma| \hat{T}_{8}|i\rangle=\left[\int d^{3} \vec{r}^{\prime} J\left(\left|\vec{r}-\vec{r}^{\prime}\right|\right) \sum_{\sigma^{\prime}} \sum_{\mu=1}^{A} \phi_{\mu}^{*}\left(\vec{r}^{\prime} \sigma^{\prime}\right) \vec{l}^{\prime} \cdot \vec{\sigma}^{\prime} \phi_{\mu}\left(\vec{r}^{\prime} \sigma^{\prime}\right)\right] \phi_{i}(\vec{r} \sigma)
\end{aligned}
$$

RECOVERING STANDARD RESULTS...

* It is easily seen that term \hat{T}_{1} can be brought into the familiar form

$$
\langle\vec{r} \sigma| \hat{T}_{1}|i\rangle=F(\vec{r}) \vec{l} \cdot \vec{\sigma} \phi_{i}(\vec{r} \sigma)
$$

with

$$
F(\vec{r}) \equiv \int d^{3} \vec{r}^{\prime} J\left(\left|\vec{r}-\vec{r}^{\prime}\right|\right) \rho\left(\vec{r}^{\prime}\right)
$$

* Term \hat{T}_{2} can be written as

$$
\langle\vec{r} \sigma| \hat{T}_{2}|i\rangle=\vec{G}(\vec{r}) \wedge \vec{p} \cdot \vec{\sigma} \phi_{i}(\vec{r} \sigma)
$$

where

$$
\text { with } \quad \vec{g}\left(\vec{r}, \vec{r}^{\prime}\right) \equiv J\left(\left|\vec{r}-\vec{r}^{\prime}\right|\right)\left(-\vec{r}^{\prime}\right) \rho\left(\vec{r}^{\prime}\right)
$$

RECOVERING STANDARD RESULTS...

Now, if the symmetries of the problem are such that the vector $\vec{G}(\vec{r})$ is proportionnal to the position vector \vec{r}, one can write (Horniak 1975)

$$
\langle\vec{r} \sigma| T_{2}^{\vec{G} \| \vec{r}}|i\rangle=F^{\prime}(\vec{r}) \vec{l} \cdot \vec{\sigma} \phi_{i}(\vec{r} \sigma)
$$

with

$$
F^{\prime}(\vec{r})=\int d^{3} \vec{r}^{\prime} \frac{\vec{g}\left(\vec{r}, \vec{r}^{\prime}\right) \cdot \vec{r}}{r^{2}}
$$

... BUT WHAT ABOUT THE OTHER TERMS?

* First of all, the form factors can be calculated explicitely, avoiding the "standard" expression implying the gradient of the density.
\star Secondly, the term \hat{T}_{2} should be used in its general form.

夫 And what about the other $\mathbf{6}$ remaining terms ?

PRACTICAL IMPLEMENTATION

We will opt for the iterative diagonalization procedure of the hamiltonian matrix

$$
(H)_{i k} \equiv\langle i| \hat{t}|k\rangle+\sum_{j l}\langle i j| \hat{V}|k l\rangle d_{j l}
$$

This will for instance require calculating terms like

$$
\begin{gathered}
\left\langle n \sigma ; n^{\prime} \sigma^{\prime}\right| \hat{T}_{1}\left|m \kappa ; m^{\prime} \kappa^{\prime}\right\rangle \\
=\iint d^{3} \vec{r} d^{3} \vec{r}^{\prime} \varphi_{n}^{*}(\vec{r}) \varphi_{n^{\prime}}^{*}\left(\vec{r}^{\prime}\right)\left\langle\vec{r} \sigma ; \vec{r}^{\prime} \sigma^{\prime}\right| \hat{T}_{1}\left|m \kappa ; m^{\prime} \kappa^{\prime}\right\rangle \\
=\delta_{\kappa^{\prime} \sigma^{\prime}} \sum_{k=x, y, z}\langle\sigma| \hat{\sigma}_{k}|\kappa\rangle \int d^{3} \vec{r} \varphi_{n}^{*}(\vec{r})\left[\int d^{3} \vec{r}^{\prime} \varphi_{n^{\prime}}^{*}\left(\vec{r}^{\prime}\right) J\left(\left|\vec{r}-\vec{r}^{\prime}\right|\right) \varphi_{m^{\prime}}\left(\vec{r}^{\prime}\right)\right] \hat{l}_{k} \varphi_{m}(\vec{r})
\end{gathered}
$$

CONCLUSIONS AND OUTLOOK

* We propose a direct way to treat "standard terms" (spin-orbit...) as well as more "exotic" ones (anti-symmetric spin-orbit...) in the framework of the mean-field with a minimal number of parameters.
\star These terms correspond to those in the nucleon-nucleon interactions a priori allowed by symmetry considerations.
\star They are treated self-consistently in the mean-field approach.
* The Hartree approximation is examined first; Fock (exchange) will follow.
* Symmetry-violating terms can be studied with a certain freedom (spontaneous symmetry breaking and restoration; projection techniques...)

