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INTRODUCTION

? Since the early days, the concept of mean fieldhas been very

succesful in nuclear structure physics.

? We propose a method combining the non self-consistent

mean-field part with self-consistent extra terms such as the

spin-orbit , the anti-symmetric spin-orbit , the tensor force...

? Our approach is based on a minimal number of parameters

describing the form factors of the forces, in order to increase the

predictive power.
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GENERAL TWO-BODY INTERACTION

When looking for possible nucleon-nucleon interactions one usually

adopts the following postulates (Eisenbud and Wigner; Okubo and

Marshak) for the two-body potential :

? Invariance with respect to particle exchange.

? Invariance with respect to spatial translations.

? Invariance with respect to spatial rotations.

? Invariance with respect to rotations in isospace.

? Galilean invariance.

? Hermiticity.

? Invariance with respect to inversions.

? Invariance with respect to time-reversal.
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SPIN-TENSOR DECOMPOSITION

? In the fermionic spin-1/2 space, any operator can be expressed

with the help of σ0 ≡ I and the Pauli matrices σx, σy and σz.

? Therefore, the space of two nucleons can be described by a set

of 4 × 4 = 16 operators composed of the tensor product of the

corresponding operators for each particle, as e.g. σa
i σb

j , with

i = 0, 1, 2, 3 and j = 0, 1, 2, 3.

? We require the interaction to be independent of the interchange

between the two particles, and therefore we use the 6

irreducible tensors (Conze, Feldmeier, Manakos) :

S
(0)
1 = 1, S

(2)
2 = [~σa × ~σb](0), S

(1)
3 = ~σa + ~σb

S
(2)
4 = [~σa×~σb](2), S

(1)
5 = [~σa×~σb](1), S

(1)
6 = ~σa−~σb.
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Advantage : These 6 tensors S(k)
µ of rank k can immediately be

coupled with a tensor operator of the same rank in configuration

space X(k)
µ to a scalar and the so obtained scalar functions finally

summed to the general scalar (i.e. invariant with respect to spatial

rotations) two-particle interaction (PT=0 and PT=1 are projectors on

the states T = 0 and T = 1) :

V (a, b) =
6∑

µ=1

{
[X(k)

µ × S(k)
µ ](0)PT=0 + [Y (k)

µ × S(k)
µ ](0)PT=1

}
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SYMMETRY CONSIDERATIONS

? We demand V (a, b) to be symmetric with respect to particle

permutation.

? The combinations S1, S2, S3, S4 are symmetric with respect to

the interchange of the spins of the particles, and therefore the

corresponding tensors X1, X2, X3, X4 and Y1, Y2, Y3, Y4 will

have to be symmetric.

? The combinations S5, S6 are anti-symmetric with respect to the

interchange of the spins of the particles, and therefore the

corresponding tensors X5, X6 and Y5, Y6 will have to be

anti-symmetric.
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ANTI-SYMMETRIC SPIN-ORBIT

? The last possibility corresponds to the ALS (anti-symmetric

spin-orbit) part of the interaction.

? It violates the principle of invariance of the interaction with

respect to the relative parity of two nucleons, and is therefore in

principle not allowed.

? However, this is true for the free interaction, but not really

necessary in effective interactions(Conze, Feldmeier,

Manakos).
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HARTREE-FOCK FORMALISM

? Many-body hamiltonian :

Ĥ =
∑

αβ

〈α|t̂|β〉a†
αaβ +

1

2

∑

αβγδ

〈αβ|V̂ |γδ〉a†
αa

†
βaδaγ

? Hartree-Fock ground state of the system of A particles :

|Φ〉 =
A∏

µ=1

a†
µ|0〉

? Hartree-Fock equations :

〈α|ĥHF |β〉 ≡ 〈α|t̂ + ÛHF |β〉 = εαδαβ

? Hartree-Fock potential :

〈α|ÛHF |β〉 ≡
A∑

µ=1

〈αµ|V̂ |β̃µ〉 =
A∑

µ=1

[
〈αµ|V̂ |βµ〉−〈αµ|V̂ |µβ〉

]
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INTEGRO-DIFFERENTIAL FORM

? The HF equations can be written as a system of

integro-differential equations

− ~
2

2m
∆φi(q) +

∫
dq′

A∑

µ=1

φ∗
µ(q′)〈q; q′|V̂ |ĩ; µ〉 = εiφi(q)

? In the Hartree approximation one has

− ~
2

2m
∆φi(~rσ) + 〈~rσ|ÛH|i〉 = εiφi(~rσ)

where

〈~rσ|ÛH|i〉 =

∫
d3~r ′

∑

σ′

A∑

µ=1

φ∗
µ(~r ′σ′)〈~rσ; ~r ′σ′|V̂ |i; µ〉
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MATRIX FORM OF THE HARTREE EQUATIONS

? Introduce a single-particle basis |i〉, |j〉, |k〉, |l〉 . . . , and the

coefficients cα
i ≡ 〈i|α〉.

? Introducing closure relations one gets the matrix relation :
∑

k

(H)ikcα
k = εαcα

i

? where :

(H)ik ≡ 〈i|t̂|k〉 +
∑

jl

〈ij|V̂ |kl〉djl

? and :

djl ≡
∑

µ occ.

c
µ
j

∗
c

µ
l
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PARTICULARITY OF THE METHOD

? The particularity of the method is that the interaction is split into

a non self-consistent part (Woods-Saxon), and terms treated

self-consistently (spin-orbit...).

? Advantage: Woods-Saxon potential well under control,

especially when it comes to extrapolations to large numbers of

particles in the system.

? Goal: compare non self-consistent and self-consistent

treatment of “well known" interactions like the spin-orbit, and

also more “exotic" terms like the anti-symmetric spin-orbit

interaction.
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CHOICE OF THE S.P. BASIS

? Three-dimensional harmonic-oscillator eigenfunctions

ϕn,ms(~rσ) ≡ 〈~rσ|n, ms〉 = ϕnx(x) ϕny (y) ϕnz (z) χms(σ)

where

ϕnµ(xµ) = 〈xµ|nµ〉 =

√
βµ√

2nµnµ!
√

π
e−

β2
µxµ

2

2 Hnµ(βµxµ)

? The actual basis used is :

|n+〉 ≡
∑

σ

αnσ |n, σ〉 and |n−〉 ≡
∑

σ

βnσ |n, σ〉

? Advantage: hamiltonian matrix Hik may be bloc-diagonal.
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MATRIX ELEMENTS OF THE INTERACTION

For instance we have

〈n+, n′ + |V̂ |m+, m′+〉

=
∑

σ,σ′,κ,κ′

αnσ
∗αn′σ′

∗〈nσ; n′σ′|V̂ |mκ; m′κ′〉αmκαm′κ′

and therefore the problem consists in evaluating the bracket

〈nσ; n′σ′|V̂ |mκ; m′κ′〉
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MATRIX ELEMENTS OF THE INTERACTION

The last matrix element is in turn evaluated by the introduction of the

closure relation

I =

∫ ∫
d3~rd3~r ′

∑

S

∑

S′

|~rS;~r ′S′〉〈~rS;~r ′S′|

wherefrom finally

〈nσ; n′σ′|V̂ |mκ; m′κ′〉

=

∫ ∫
d3~rd3~r ′

∑

S

∑

S′

〈nσ; n′σ′|~rS;~r ′S′〉〈~rS;~r ′S′|V̂ |mκ; m′κ′〉

Title Page – p.14/25



THE CASE OF THE SPIN-ORBIT

? Has been introduced in the mean-field to reproduce the correct

magic numbers.

? Origin has been intensively discussed.

? There was early evidence that it should stem from the

nucleon-nucleon spin-orbit part (Brueckner, Lockett, Rotenberg

1961; Barrett 1967)

? Relativistic effect (Thomas term) too small by an order of

magnitude.

? Correct spin-orbit term in the s.p. potential can be obtained

from a relativistic HF calculation with OBEP (Brockmann 1978);

→ exchange of ω-bosons.

? Easy description within the context of RMF theory.
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FORM FACTOR OF THE SPIN-ORBIT
? In the context of mean-field calculations (Woods-Saxon...)

sometimes very intuitive arguments are given to justify the form

factors used.

? Bohr-Mottelson: The spin-orbit coupling is of necessity a

surface term since, in a region of constant density, the only

direction with local significance is that of the particle motion

and, thus, it is impossible to define a pseudovector that can be

coupled to the nuclear spin. In the surface region, however, the

density gradient defines the radial direction and makes it

possible to introduce a local potential of the form

VLS ∝ ∇ρ(r) ∧ ~p · ~s = ~
−1(~l · ~s)

1

r

∂ρ(r)

∂r

? A justification for the form factor can be found in the textbook by

W. Horniak 1975.
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SPIN-ORBIT POTENTIAL

? Consider the nucleon-nucleon spin-orbit interaction

V̂ SO = J(|~r − ~r ′|) (~r − ~r ′) ∧ (~p − ~p ′) · (~σ + ~σ ′)

? In the Hartree equations one has to evaluate

〈~rσ|ÛSO
H |i〉 =

∫
d3~r ′

∑

σ′

A∑

µ=1

φ∗
µ(~r ′σ′)〈~rσ; ~r ′σ′|V̂ SO|i; µ〉
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SPIN-ORBIT POTENTIAL

This can be done for all the 8 following terms separately :

J(|~r − ~r ′|) (~r − ~r ′) ∧ (~p − ~p ′) · (~σ + ~σ ′) = J(|~r − ~r ′|) (~r ∧ ~p) · ~σ → T̂1

− J(|~r − ~r ′|) (~r ′ ∧ ~p) · ~σ → T̂2

− J(|~r − ~r ′|) (~r ∧ ~p ′) · ~σ → T̂3

+ J(|~r − ~r ′|) (~r ′ ∧ ~p ′) · ~σ → T̂4

+ J(|~r − ~r ′|) (~r ∧ ~p) · ~σ ′ → T̂5

− J(|~r − ~r ′|) (~r ′ ∧ ~p) · ~σ ′ → T̂6

− J(|~r − ~r ′|) (~r ∧ ~p ′) · ~σ ′ → T̂7

+ J(|~r − ~r ′|) (~r ′ ∧ ~p ′) · ~σ ′ → T̂8.
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EXPLICIT EXPRESSIONS

〈~rσ|T̂1|i〉 =
[ ∫

d3~r ′J(|~r − ~r ′|)ρ(~r ′)
]
~l · ~σ φi(~rσ)

〈~rσ|T̂2|i〉 =
[ ∫

d3~r ′J(|~r − ~r ′|)(−~r ′)
∑

σ′

A∑

µ=1

φ∗
µ(~r ′σ′)φµ(~r ′σ′)

]
∧ ~p · ~σ φi(~rσ)

〈~rσ|T̂3|i〉 =
[ ∫

d3~r ′J(|~r − ~r ′|)
∑

σ′

A∑

µ=1

φ∗
µ(~r ′σ′)(−~p ′) φµ(~r ′σ′)

]
· (~r ∧ ~σ) φi(~rσ)

〈~rσ|T̂4|i〉 =
[ ∫

d3~r ′J(|~r − ~r ′|)
∑

σ′

A∑

µ=1

φ∗
µ(~r ′σ′)~l ′ φµ(~r ′σ′)

]
· ~σ φi(~rσ)
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EXPLICIT EXPRESSIONS

〈~rσ|T̂5|i〉 =
[ ∫

d3~r ′J(|~r − ~r ′|)
∑

σ′

A∑

µ=1

φ∗
µ(~r ′σ′) ~σ ′ φµ(~r ′σ′)

]
·~l φi(~rσ)

〈~rσ|T̂6|i〉 =
[ ∫

d3~r ′J(|~r − ~r ′|)
∑

σ′

A∑

µ=1

φ∗
µ(~r ′σ′)(−~r ′ ∧ ~σ ′)φµ(~r ′σ′)

]
· ~pφi(~rσ)

〈~rσ|T̂7|i〉 =
[ ∫

d3~r ′J(|~r − ~r ′|)
∑

σ′

A∑

µ=1

φ∗
µ(~r ′σ′)(−~p ′ ∧ ~σ ′) φµ(~r ′σ′)

]
· ~r φi(~rσ)

〈~rσ|T̂8|i〉 =
[ ∫

d3~r ′J(|~r − ~r ′|)
∑

σ′

A∑

µ=1

φ∗
µ(~r ′σ′)~l ′ · ~σ ′ φµ(~r ′σ′)

]
φi(~rσ)
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RECOVERING STANDARD RESULTS...

? It is easily seen that term T̂1 can be brought into the familiar

form

〈~rσ|T̂1|i〉 = F (~r)~l · ~σ φi(~rσ)

with

F (~r) ≡
∫

d3~r ′J(|~r − ~r ′|)ρ(~r ′).

? Term T̂2 can be written as

〈~rσ|T̂2|i〉 = ~G(~r) ∧ ~p · ~σ φi(~rσ)

where

with ~g(~r, ~r ′) ≡ J(|~r − ~r ′|)(−~r ′)ρ(~r ′).
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RECOVERING STANDARD RESULTS...

Now, if the symmetries of the problem are such that the vector ~G(~r)

is proportionnal to the position vector ~r, one can write (Horniak

1975)

〈~rσ|T ~G‖~r
2 |i〉 = F ′(~r)~l · ~σ φi(~rσ)

with

F ′(~r) =

∫
d3~r ′~g(~r, ~r ′) · ~r

r2
.
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... BUT WHAT ABOUT THE OTHER TERMS ?

? First of all, the form factors can be calculated explicitely,

avoiding the “standard" expression implying the gradient of the

density.

? Secondly, the term T̂2 should be used in its general form.

? And what about the other 6 remaining terms ?
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PRACTICAL IMPLEMENTATION

We will opt for the iterative diagonalization procedure of the

hamiltonian matrix

(H)ik ≡ 〈i|t̂|k〉 +
∑

jl

〈ij|V̂ |kl〉djl

This will for instance require calculating terms like

〈nσ; n′σ′|T̂1|mκ; m′κ′〉

=

∫ ∫
d3~rd3~r ′ϕ∗

n(~r)ϕ∗
n′(~r

′)〈~rσ; ~r ′σ′|T̂1|mκ; m′κ′〉

=δκ′σ′

∑

k=x,y,z

〈σ|σ̂k|κ〉
∫

d3~rϕ∗
n(~r)

[ ∫
d3~r ′ϕ∗

n′(~r
′)J(|~r − ~r ′|)ϕm′(~r ′)

]
l̂kϕm(~r)
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CONCLUSIONS AND OUTLOOK

? We propose a direct way to treat “standard terms" (spin-orbit...)

as well as more “exotic" ones (anti-symmetric spin-orbit...) in

the framework of the mean-field with a minimal number of

parameters.

? These terms correspond to those in the nucleon-nucleon

interactions a priori allowed by symmetry considerations.

? They are treated self-consistentlyin the mean-field approach.

? The Hartree approximation is examined first; Fock (exchange)

will follow.

? Symmetry-violating terms can be studied with a certain freedom

(spontaneous symmetry breaking and restoration; projection

techniques...)
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