Parity effects in nuclear collective and single particle motion

Nikolay Minkov
Institute of Nuclear Research and Nuclear Energy,
Bulgarian Academy of Sciences, Sofia, Bulgaria

Kazimierz, 22 September 2010

COLLABORATORS

Svetla Drenka (INRNE Sofia)
Michael Strecker (University of Giessen)
Werner Scheid (University of Giessen)

Contents

(1) Nuclear Quadrupole-Octupole Motion

- Axial quadrupole and octupole vibrations and rotations
- Coherent quadrupole-octupole mode
- Reflection asymmetric deformed shell model
- Particle-core coupling
(2) Parity-mixing effects in the $\left(\beta_{2}, \beta_{3}\right)$ - plane
- Study of parity mixing and projected decoupling factors
(3) Conclusion

Hamiltonian

$$
H=H_{\mathrm{rot}}+H_{\mathrm{vib}}+H_{\mathrm{sp}}+H_{\mathrm{coriol}}
$$

Assumptions

- The nucleus oscillates simultaneously with respect to axial quadrupole β_{2} and octupole β_{3} deformation variables coupled through a centrifugal interaction
- odd mass nuclei \rightarrow the single nucleon moves in a quad-rupole-octupole deformed potential induced by the eveneven core
- the core and the unpaired nucleon are coupled through the Coriolis interaction and the good total parity of the nucleus

Collective Hamilton

[N. M. et al, Phys. Rev. C 73, 044315 (2006); 76, 034324 (2007)]

$$
H_{\mathrm{qo}}=H_{\mathrm{rot}}+H_{\mathrm{vib}}+H_{\text {coriol }}
$$

$$
H_{\mathrm{qo}}=-\frac{\hbar^{2}}{2 B_{2}} \frac{\partial^{2}}{\partial \beta_{2}^{2}}-\frac{\hbar^{2}}{2 B_{3}} \frac{\partial^{2}}{\partial \beta_{3}^{2}}+\frac{1}{2} C_{2} \beta_{2}^{2}+\frac{1}{2} C_{3} \beta_{3}^{2}+\frac{X(I, K, \pi a)}{2\left(d_{2} \beta_{2}^{2}+d_{3} \beta_{3}^{2}\right)}
$$

$$
X(I, K, \pi a)=\frac{1}{2}\left[d_{0}+I(I+1)-K^{2}+\pi a \delta_{K, \frac{1}{2}}(-1)^{I+1 / 2}\left(I+\frac{1}{2}\right)\right]
$$

$a \rightarrow$ Coriolis decoupling factor

Coherent quadrupole-octupole mode

$$
\begin{aligned}
& C_{2} / B_{2}=C_{3} / B_{3} \equiv \omega^{2} \quad \beta_{2} \rightarrow \eta \cos \phi, \quad \beta_{3} \rightarrow \eta \sin \phi \\
& E_{n, k}(I, K, \pi a)=\hbar \omega\left[2 n+1+\sqrt{k^{2}+b X(I, K, \pi a)}\right], n=0,1,2, \ldots
\end{aligned}
$$

Core wave function:

$$
\phi^{ \pm}(\eta, \phi)=\psi(\eta) \varphi^{ \pm}(\phi)
$$

$\psi_{\mathrm{n}}^{\mathbf{1}}(\eta) \rightarrow$ generalized Laguerre functions

$$
\begin{array}{ll}
\varphi^{+}(\phi)=\sqrt{2 / \pi} \cos (k \phi), & k=1,3,5, \ldots \rightarrow \pi=(+) \\
\varphi^{-}(\phi)=\sqrt{2 / \pi} \sin (k \phi), & k=2,4,6, \ldots \rightarrow \pi=(-)
\end{array}
$$

\Rightarrow Parity effects in the collective and s.p. motion

Axially deformed Woods-Saxon potential

[M. Brack et al, Rev. Mod. Phys. 44, 320 (1972)]

$$
\begin{gathered}
H_{\mathrm{sp}}=T+V_{\mathrm{ws}}+V_{\mathrm{so}}+V_{\text {Coul }} \\
V_{\mathrm{ws}}(\mathbf{r}, \hat{\beta})=V_{0}\left[1+\exp \left(\frac{\operatorname{dist} \Sigma(\mathbf{r}, \hat{\beta})}{a}\right)\right]^{-1} \\
R(\theta, \hat{\beta})=c(\hat{\beta}) R_{0}\left(1+\sum_{\lambda=2,3, \ldots} \beta_{\lambda} Y_{\lambda 0}(\cos \theta)\right), \quad \hat{\beta} \equiv\left(\beta_{2}, \beta_{3}, \beta_{4}, \beta_{5}, \beta_{6}\right)
\end{gathered}
$$

[computer code by S. Cwiok et al., Comp. Phys. Comm. 46, 379

Parity mixed s.p. states

S.P. wave function: $\mathcal{F}_{\Omega}=\sum_{N n_{z} \Lambda} C_{N n_{z} \Lambda}^{\Omega}\left|N n_{z} \wedge \Omega\right\rangle, \quad(\Omega=K)$

$$
\hat{\pi}_{\mathrm{sp}}\left|N n_{z} \wedge \Omega\right\rangle=(-1)^{N}\left|N n_{z} \wedge \Omega\right\rangle \quad \pi_{\mathrm{sp}}=(-1)^{N}
$$

$\beta_{3}=0 \Rightarrow N=$ even $\left(\pi_{\mathrm{sp}}=+\right)$ or $N=\operatorname{odd}\left(\pi_{\mathrm{sp}}=-\right)$
$\beta_{3} \neq 0 \Rightarrow N=$ even and $N=$ odd \Rightarrow parity mixed s.p. states

$$
\mathcal{F}_{\Omega}=\sum_{\pi_{\mathrm{sp}}= \pm 1} \mathcal{F}_{\Omega}^{\left(\pi_{\mathrm{sp}}\right)}=\mathcal{F}_{\Omega}^{(+)}+\mathcal{F}_{\Omega}^{(-)}
$$

$$
\hat{\pi}_{\mathrm{sp}} \mathcal{F}_{\Omega}^{(\pm)}= \pm \mathcal{F}_{\Omega}^{(\pm)} \Rightarrow \hat{\pi}_{\mathrm{sp}} \mathcal{F}_{\Omega}=\mathcal{F}_{\Omega}^{(+)}-\mathcal{F}_{\Omega}^{(-)}
$$

average parity: $\left\langle\hat{\pi}_{\text {sp }}\right\rangle=\left\langle\mathcal{F}_{\Omega}\right| \hat{\pi}_{\text {sp }}\left|\mathcal{F}_{\Omega}\right\rangle=\sum_{N n_{z} \Lambda}(-1)^{N}\left(C_{N n_{z} \Lambda}^{\Omega}\right)^{2}$

Total Particle-Core wave function

$$
\begin{aligned}
& \Psi_{I M K}^{\pi}=\frac{1}{2} \mathcal{N}\left(1+\mathcal{R}_{1}\right) D_{M K}^{\prime}(\theta)(1+\pi \hat{P}) \Phi_{\text {core }}^{\pi_{c}} \mathcal{F}_{K} \\
& \\
& \mathcal{R}_{1} D_{M K}^{\prime}=(-1)^{I-K} D_{M-K}^{\prime} \\
& \mathcal{R}_{1} \mathcal{F}_{K}=\overline{\mathcal{F}}_{K}=\mathcal{F}_{-K} \\
& \mathcal{R}_{1} \Phi_{\text {core }}^{\pi_{c}}=\hat{\pi}_{c} \Phi_{\text {core }}^{\pi_{c}}= \pm \Phi_{\text {core }}^{ \pm}
\end{aligned}
$$

$\pi_{c} \rightarrow$ fixed
$\pi_{c}=(+) \rightarrow \Phi_{\text {core }}^{+} \Rightarrow$ downwards shifted levels
$\pi_{c}=(-) \rightarrow \Phi_{\text {core }}^{-} \Rightarrow$ upwards shifted energy sequence
$(1+\pi \hat{P}) \rightarrow$ projects out $\mathcal{F}_{K}^{(+)}$or $\mathcal{F}_{K}^{(-)} \Rightarrow \pi=\pi_{c} \cdot\left(\pi_{\mathrm{sp}}\right)$
\Rightarrow soft octupole shape in a strong coupling limit

Particle-core coupling

Schematic levels

[N. Minkov, S. Drenska, M. Strecker and W. Scheid, J. Phys. G: Nucl. Part. Phys. 36, 025108 (2009); 37, 025103 (2010)]

$$
\begin{array}{ll}
(-) \underline{\Phi_{\mathbf{C}}^{(-)} \mathrm{F}^{(+)}} \\
(+) \frac{\Phi_{\mathbf{C}}^{(+)} \mathbf{F}^{(+)}}{\pi_{\mathrm{gs}}=(+)} & (-) \frac{\Phi_{\mathbf{C}}^{(+)} \mathrm{F}_{\mathbf{C}}^{(-)} \mathrm{F}^{(-)}}{\pi_{\mathrm{gs}}=(-)}
\end{array}
$$

Particle-core coupling

Decoupling factors in parity mixed s.p. states

$$
\begin{gathered}
-\left\langle\Psi_{I M \frac{1}{2}}^{\pi}\right| \hat{l}_{-} \hat{j}_{+}\left|\Psi_{I M \frac{1}{2}}^{\pi}\right\rangle=\mathcal{N}^{2}(-1)^{1+\frac{1}{2}}\left(1+\frac{1}{2}\right) \cdot\langle\text { decoupling factor }\rangle \\
a=\frac{1}{2} \pi_{c}\left\{\left\langle\left.\mathcal{F}_{\frac{1}{2}} \hat{j}_{+} \right\rvert\, \mathcal{F}_{-\frac{1}{2}}\right\rangle+\pi \pi_{c}\left\langle\hat{\pi}_{\mathrm{sp}} \mathcal{F}_{\frac{1}{2}}\right| \hat{j}_{+}\left|\mathcal{F}_{-\frac{1}{2}}\right\rangle\right\} \\
=\frac{1}{2} \pi_{c}\left[\left(1+\pi \pi_{c}\right) a^{(+)}+\left(1-\pi \pi_{c}\right) a^{(-)}\right] \\
a^{(+)}=\left\langle\mathcal{F}_{1 / 2}^{(+)}\right| \hat{j}_{+}\left|\mathcal{F}_{-1 / 2}^{(+)}\right\rangle \quad a^{(-)}=\left\langle\mathcal{F}_{1 / 2}^{(-)}\right| \hat{j}_{+}\left|\mathcal{F}_{-1 / 2}^{(-)}\right\rangle \\
\pi_{\mathrm{gs}}=(+) \Rightarrow a=a^{(+)} \\
\pi_{\mathrm{gs}}=(-) \Rightarrow a=-a^{(-)}
\end{gathered}
$$

Global deformed shell model calculations in the $\left(\beta_{2}, \beta_{3}\right)$ - plane

- Dependence of the s.p. angular momentum projection K and the s.p. parity mixing on quadrupole-octupole deformations
- Behaviour of the Coriolis decoupling factor in the $\left(\beta_{2}, \beta_{3}\right)$ plane
- Effects on the collective parity-doublet spectra
- Favourable deformation regions and quadrupole-octupole collectivity

Study of parity mixing and projected decoupling factors

K-values for the odd nucleon of ${ }^{219} \mathrm{Ra}$ in the $\left(\beta_{2}, \beta_{3}\right)$ plane

Study of parity mixing and projected decoupling factors

Decoupling factor a^{+}in ${ }^{219}$ Ra (3D plot)

Study of parity mixing and projected decoupling factors

Decoupling factor a^{+}and average parity $\left\langle\pi_{\text {sp }}\right\rangle$ in ${ }^{219} \mathrm{Ra}$

Split parity-doublet spectrum in ${ }^{219} \mathbf{R a}$

Decoupling factor a^{+}in ${ }^{225}$ Ra (3D plot)

Decoupling factor $\mathrm{a}^{(+)}$in ${ }^{225} \mathrm{Ra}$

Study of parity mixing and projected decoupling factors

Decoupling factor a^{+}and average parity $\left\langle\pi_{\text {sp }}\right\rangle$ in ${ }^{225} \mathrm{Ra}$

Study of parity mixing and projected decoupling factors

Split parity-doublet spectrum in ${ }^{225}$ Ra

Study of parity mixing and projected decoupling factors

Decoupling factor a^{+}and average parity $\left\langle\pi_{s p}\right\rangle$ in ${ }^{225}$ Th

Decoupling factor a^{+}in ${ }^{241} \mathrm{Cm}$ (3D plot)

Decoupling factor $\mathrm{a}^{(+)}$in ${ }^{241} \mathrm{Cm}$

Study of parity mixing and projected decoupling factors

Decoupling factor a^{+}and average parity $\left\langle\pi_{\text {sp }}\right\rangle$ in ${ }^{241} \mathrm{Cm}$

CONCLUSION

- Model of quadrupole-octupole vibrating and rotating core plus particle \rightarrow new coupling scheme with parity mixed s.p. states
- Parity mixing \rightarrow complex behaviour of $\left\langle\hat{\pi}_{\text {sp }}\right\rangle$ in the $\left(\boldsymbol{\beta}_{2}, \boldsymbol{\beta}_{3}\right)$ plane without saturation to $\left\langle\hat{\pi}_{\text {sp }}\right\rangle=0$ with increasing $\beta_{3} \rightarrow$ (wide ranges of approximately good "dominant" parity)
- Coriolis decoupling factor \rightarrow strong dependence on β_{3} and β_{2} deformations; comparison to the collective model \rightarrow regions of physically reasonable deformations in the ($\boldsymbol{\beta}_{2}, \boldsymbol{\beta}_{3}$) plane
- Consistent collective and microscopic model description of the split parity-doublet spectra in odd-mass nuclei

