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Hamiltonian

H = Hrot + Hvib + Hsp + Hcoriol

Assumptions

The nucleus oscillates simultaneously with respect to axial
quadrupole β2 and octupole β3 deformation variables
coupled through a centrifugal interaction

odd mass nuclei → the single nucleon moves in a quad-
rupole-octupole deformed potential induced by the even-
even core

the core and the unpaired nucleon are coupled through the
Coriolis interaction and the good total parity of the nucleus
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Collective Hamilton

[N. M. et al, Phys. Rev. C 73, 044315 (2006); 76, 034324 (2007)]

Hqo = Hrot + Hvib + Hcoriol

Hqo = − ~2

2B2

∂2

∂β2
2

− ~2

2B3

∂2

∂β2
3

+
1

2
C2β2

2 +
1

2
C3β3

2 +
X (I ,K , πa)

2(d2β2
2 + d3β2

3)

X (I ,K , πa) =
1

2

[
d0 + I (I + 1)− K 2 + πaδK , 1

2
(−1)I+1/2

(
I +

1

2

)]
a → Coriolis decoupling factor



Nuclear Quadrupole-Octupole Motion Parity-mixing effects in the (β2, β3)- plane Conclusion

Coherent quadrupole-octupole mode

Coherent quadrupole-octupole mode

C2/B2 = C3/B3 ≡ ω2 β2 → η cosφ , β3 → η sinφ

En,k(I ,K , πa) = ~ω
[

2n + 1 +
√
k2 + bX (I ,K , πa)

]
, n = 0, 1, 2, ...

Core wave function: Φ±(η, φ) = ψ(η)ϕ±(φ)

ψI
n(η) → generalized Laguerre functions

ϕ+(φ) =
√

2/πcos(kφ) , k = 1, 3, 5, ... → π= (+)

ϕ−(φ) =
√

2/πsin(kφ) , k = 2, 4, 6, ... → π= (−)

⇒ Parity effects in the collective and s.p. motion
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Reflection asymmetric deformed shell model

Axially deformed Woods-Saxon potential

[ M. Brack et al, Rev. Mod. Phys. 44, 320 (1972)]

Hsp = T + Vws + Vso + VCoul

Vws(r, β̂) = V0

[
1 + exp

(
distΣ(r, β̂)

a

)]−1

R(θ, β̂) = c(β̂)R0

1 +
∑

λ=2,3,...

βλYλ0(cos θ)

 , β̂ ≡ (β2, β3, β4, β5, β6)

[computer code by S. Cwiok et al., Comp. Phys. Comm. 46, 379

(1987)]



Nuclear Quadrupole-Octupole Motion Parity-mixing effects in the (β2, β3)- plane Conclusion

Reflection asymmetric deformed shell model

Parity mixed s.p. states

S.P. wave function: FΩ =
∑

NnzΛ CΩ
NnzΛ|NnzΛΩ〉, (Ω = K )

π̂sp|NnzΛΩ〉 = (−1)N |NnzΛΩ〉 πsp = (−1)N

β3 = 0 ⇒ N =even (πsp = +) or N =odd (πsp = −)
β3 6= 0 ⇒ N =even and N =odd ⇒ parity mixed s.p. states

FΩ =
∑

πsp=±1

F (πsp)
Ω = F (+)

Ω + F (−)
Ω

π̂spF (±)
Ω = ±F (±)

Ω ⇒ π̂spFΩ = F (+)
Ω −F (−)

Ω

average parity: 〈π̂sp〉 = 〈FΩ|π̂sp|FΩ〉 =
∑

NnzΛ(−1)N(CΩ
NnzΛ)2
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Particle-core coupling

Total Particle-Core wave function

Ψπ
IMK =

1

2
N (1 +R1)D I

M K (θ)(1 + πP̂)Φπc
coreFK

R1D
I
M K = (−1)I−KD I

M −K P̂ = π̂c · π̂sp

R1FK = FK = F−K π̂spFK = F (+)
K −F (−)

K
R1Φπc

core = π̂cΦπc
core = ±Φ±

core

πc → fixed
πc = (+) → Φ+

core ⇒ downwards shifted levels
πc = (−) → Φ−

core ⇒ upwards shifted energy sequence

(1 + πP̂) → projects out F (+)
K or F (−)

K ⇒ π = πc · (πsp)

⇒ soft octupole shape in a strong coupling limit
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Particle-core coupling

Schematic levels

[N. Minkov, S. Drenska, M. Strecker and W. Scheid, J. Phys. G: Nucl.

Part. Phys. 36, 025108 (2009); 37, 025103 (2010)]
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Particle-core coupling

Decoupling factors in parity mixed s.p. states
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πgs = (+) ⇒ a = a(+)

πgs = (−) ⇒ a = −a(−)
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Global deformed shell model calculations in the (β2, β3)- plane

Dependence of the s.p. angular momentum projection K and
the s.p. parity mixing on quadrupole-octupole deformations

Behaviour of the Coriolis decoupling factor in the (β2, β3)-
plane

Effects on the collective parity-doublet spectra

Favourable deformation regions and quadrupole-octupole
collectivity



Nuclear Quadrupole-Octupole Motion Parity-mixing effects in the (β2, β3)- plane Conclusion

Study of parity mixing and projected decoupling factors

K -values for the odd nucleon of 219Ra in the (β2, β3) plane
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Study of parity mixing and projected decoupling factors

Decoupling factor a+ in 219Ra (3D plot)
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Study of parity mixing and projected decoupling factors

Decoupling factor a+ and average parity 〈πsp〉 in 219Ra
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Study of parity mixing and projected decoupling factors

Split parity-doublet spectrum in 219Ra
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Study of parity mixing and projected decoupling factors

Decoupling factor a+ in 225Ra (3D plot)
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Study of parity mixing and projected decoupling factors

Decoupling factor a+ and average parity 〈πsp〉 in 225Ra



Nuclear Quadrupole-Octupole Motion Parity-mixing effects in the (β2, β3)- plane Conclusion

Study of parity mixing and projected decoupling factors

Split parity-doublet spectrum in 225Ra
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Study of parity mixing and projected decoupling factors

Decoupling factor a+ and average parity 〈πsp〉 in 225Th
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Study of parity mixing and projected decoupling factors

Decoupling factor a+ in 241Cm (3D plot)
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Study of parity mixing and projected decoupling factors

Decoupling factor a+ and average parity 〈πsp〉 in 241Cm
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CONCLUSION

Model of quadrupole-octupole vibrating and rotating core plus
particle → new coupling scheme with parity mixed s.p. states

Parity mixing → complex behaviour of 〈π̂sp〉 in the (β2,β3)
plane without saturation to 〈π̂sp〉 = 0 with increasing β3 →
(wide ranges of approximately good “dominant” parity)

Coriolis decoupling factor → strong dependence on β3 and β2

deformations; comparison to the collective model → regions
of physically reasonable deformations in the (β2,β3) plane

Consistent collective and microscopic model description of the
split parity-doublet spectra in odd-mass nuclei
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