Parity effects in nuclear collective and single particle motion

Nikolay Minkov

Institute of Nuclear Research and Nuclear Energy, Bulgarian Academy of Sciences, Sofia, Bulgaria

Kazimierz, 22 September 2010

COLLABORATORS

Svetla Drenka (INRNE Sofia) Michael Strecker (University of Giessen) Werner Scheid (University of Giessen)

Contents

1 Nuclear Quadrupole-Octupole Motion

- Axial quadrupole and octupole vibrations and rotations
- Coherent quadrupole-octupole mode
- Reflection asymmetric deformed shell model
- Particle-core coupling

Parity-mixing effects in the (β₂, β₃)- plane Study of parity mixing and projected decoupling factors

3 Conclusion

Hamiltonian

$$H = H_{\rm rot} + H_{\rm vib} + H_{\rm sp} + H_{\rm coriol}$$

Assumptions

- The nucleus oscillates simultaneously with respect to axial quadrupole β_2 and octupole β_3 deformation variables coupled through a centrifugal interaction
- odd mass nuclei → the single nucleon moves in a quadrupole-octupole deformed potential induced by the eveneven core
- the core and the unpaired nucleon are coupled through the **Coriolis interaction** and the **good total parity** of the nucleus

Collective Hamilton

[N. M. et al, Phys. Rev. C 73, 044315 (2006); 76, 034324 (2007)]

$$H_{\rm qo} = H_{\rm rot} + H_{\rm vib} + H_{\rm coriol}$$

$$H_{qo} = -\frac{\hbar^2}{2B_2} \frac{\partial^2}{\partial \beta_2^2} - \frac{\hbar^2}{2B_3} \frac{\partial^2}{\partial \beta_3^2} + \frac{1}{2}C_2\beta_2^2 + \frac{1}{2}C_3\beta_3^2 + \frac{X(I, K, \pi a)}{2(d_2\beta_2^2 + d_3\beta_3^2)}$$

$$X(I, K, \pi a) = \frac{1}{2} \left[d_0 + I(I+1) - K^2 + \pi a \delta_{K, \frac{1}{2}} (-1)^{I+1/2} \left(I + \frac{1}{2} \right) \right]$$

 $a \rightarrow$ Coriolis decoupling factor

Parity-mixing effects in the (β_2, β_3)- plane 000000000

Conclusion

Coherent quadrupole-octupole mode

Coherent quadrupole-octupole mode

$$C_2/B_2 = C_3/B_3 \equiv \omega^2 \qquad \qquad \beta_2 \to \eta \cos \phi \ , \ \beta_3 \to \eta \sin \phi$$

$$E_{n,k}(I, K, \pi a) = \hbar \omega \left[2n + 1 + \sqrt{k^2 + bX(I, K, \pi a)} \right], \ n = 0, 1, 2, ...$$

Core wave function:

$$\Phi^{\pm}(\eta,\phi) = \psi(\eta)\varphi^{\pm}(\phi)$$

 $\psi^{\mathsf{I}}_{\mathsf{n}}(\eta) \hspace{.1in}
ightarrow$ generalized Laguerre functions

$$egin{array}{rll} arphi^+(\phi) &=& \sqrt{2/\pi} \cos(\mathsf{k}\phi) \;, & \mathsf{k}=1,3,5,... \; o \; \pi=(+) \ arphi^-(\phi) &=& \sqrt{2/\pi} \sin(\mathsf{k}\phi) \;, & \mathsf{k}=2,4,6,... \; o \; \pi=(-) \end{array}$$

 \Rightarrow Parity effects in the collective and s.p. motion

Conclusion

Reflection asymmetric deformed shell model

Axially deformed Woods-Saxon potential

[M. Brack et al, Rev. Mod. Phys. 44, 320 (1972)]

$$H_{
m sp} = T + V_{
m ws} + V_{
m so} + V_{
m Coul}$$

$$V_{ ext{ws}}(\mathbf{r},\hat{eta}) = V_0 \left[1 + \exp\left(rac{ ext{dist}_{\Sigma}(\mathbf{r},\hat{eta})}{a}
ight)
ight]^{-1}$$

$$R(\theta,\hat{\beta}) = c(\hat{\beta})R_0\left(1 + \sum_{\lambda=2,3,\dots} \beta_{\lambda}Y_{\lambda 0}(\cos\theta)\right), \quad \hat{\beta} \equiv (\beta_2,\beta_3,\beta_4,\beta_5,\beta_6)$$

[computer code by S. Cwiok et al., Comp. Phys. Comm. **46**, 379 (1987)]

Parity-mixing effects in the (β_2, β_3) - plane 000000000

Conclusion

Reflection asymmetric deformed shell model

Parity mixed s.p. states

S.P. wave function:
$$\mathcal{F}_{\Omega} = \sum_{Nn_z\Lambda} C^{\Omega}_{Nn_z\Lambda} |Nn_z\Lambda\Omega\rangle$$
, $(\Omega = K)$

$$\hat{\pi}_{\sf sp} | N n_z \Lambda \Omega
angle = (-1)^N | N n_z \Lambda \Omega
angle \qquad \pi_{\sf sp} = (-1)^N$$

 $\beta_3 = 0 \Rightarrow N = \text{even } (\pi_{sp} = +) \text{ or } N = \text{odd } (\pi_{sp} = -)$ $\beta_3 \neq 0 \Rightarrow N = \text{even and } N = \text{odd} \Rightarrow \text{parity mixed s.p. states}$

$$\mathcal{F}_{\Omega} = \sum_{\pi s p = \pm 1} \mathcal{F}_{\Omega}^{(\pi s p)} = \mathcal{F}_{\Omega}^{(+)} + \mathcal{F}_{\Omega}^{(-)}$$

$$\hat{\pi}_{sp}\mathcal{F}_{\Omega}^{(\pm)} = \pm \mathcal{F}_{\Omega}^{(\pm)} \quad \Rightarrow \quad \hat{\pi}_{sp}\mathcal{F}_{\Omega} = \mathcal{F}_{\Omega}^{(+)} - \mathcal{F}_{\Omega}^{(-)}$$

average parity: $\langle \hat{\pi}_{sp} \rangle = \langle \mathcal{F}_{\Omega} | \hat{\pi}_{sp} | \mathcal{F}_{\Omega} \rangle = \sum_{Nn_z \Lambda} (-1)^N (C_{Nn_z \Lambda}^{\Omega})^2$

Parity-mixing effects in the (β_2, β_3) - plane 000000000

Conclusion

Particle-core coupling

Total Particle-Core wave function

$$\Psi_{IMK}^{\pi} = \frac{1}{2} \mathcal{N}(1+\mathcal{R}_{1}) D_{MK}^{I}(\boldsymbol{\theta})(1+\pi\hat{P}) \Phi_{\text{core}}^{\pi_{c}} \mathcal{F}_{K}$$
$$\mathcal{R}_{1} D_{MK}^{I} = (-1)^{I-K} D_{M-K}^{I} \qquad \hat{P} = \hat{\pi}_{c} \cdot \hat{\pi}_{\text{sp}}$$
$$\mathcal{R}_{1} \mathcal{F}_{K} = \overline{\mathcal{F}}_{K} = \mathcal{F}_{-K} \qquad \hat{\pi}_{\text{sp}} \mathcal{F}_{K} = \mathcal{F}_{K}^{(+)} - \mathcal{F}_{K}^{(-)}$$
$$\mathcal{R}_{1} \Phi_{\text{core}}^{\pi_{c}} = \hat{\pi}_{c} \Phi_{\text{core}}^{\pi_{c}} = \pm \Phi_{\text{core}}^{\pm}$$

 $\begin{aligned} \pi_c &\to \text{fixed} \\ \pi_c &= (+) \to \Phi_{\text{core}}^+ \Rightarrow \text{downwards shifted levels} \\ \pi_c &= (-) \to \Phi_{\text{core}}^- \Rightarrow \text{upwards shifted energy sequence} \\ (1 + \pi \hat{P}) \to \text{projects out } \mathcal{F}_K^{(+)} \text{ or } \mathcal{F}_K^{(-)} \Rightarrow \pi = \pi_c \cdot (\pi_{\text{sp}}) \\ \Rightarrow \text{ soft octupole shape in a strong coupling limit} \end{aligned}$

Nuclear Quadrupole-Octupole Motion ○○○○●○	Parity-mixing effects in the (eta_2,eta_3) - plane 000000000	Conclusion
Particle-core coupling		
Schematic levels		

[N. Minkov, S. Drenska, M. Strecker and W. Scheid, J. Phys. G: Nucl. Part. Phys. **36**, 025108 (2009); **37**, 025103 (2010)]

Parity-mixing effects in the ($\beta_2,\,\beta_3$)- plane 000000000

Conclusion

Particle-core coupling

Decoupling factors in parity mixed s.p. states

$$-\langle \Psi^{\pi}_{IM\frac{1}{2}}|\hat{I}_{-}\hat{j}_{+}|\Psi^{\pi}_{IM\frac{1}{2}}\rangle = \mathcal{N}^{2}(-1)^{I+\frac{1}{2}}\left(I+\frac{1}{2}\right)\cdot\langle \text{decoupling factor}\rangle$$

$$a = \frac{1}{2}\pi_{c} \left\{ \left\langle \mathcal{F}_{\frac{1}{2}} | \hat{j}_{+} | \mathcal{F}_{-\frac{1}{2}} \right\rangle + \pi\pi_{c} \left\langle \hat{\pi}_{sp} \mathcal{F}_{\frac{1}{2}} | \hat{j}_{+} | \mathcal{F}_{-\frac{1}{2}} \right\rangle \right\}$$

$$= \frac{1}{2}\pi_{c} \left[(1 + \pi\pi_{c}) a^{(+)} + (1 - \pi\pi_{c}) a^{(-)} \right]$$

 $a^{(+)} = \left\langle \mathcal{F}_{1/2}^{(+)} | \hat{j}_{+} | \mathcal{F}_{-1/2}^{(+)} \right\rangle \qquad a^{(-)} = \left\langle \mathcal{F}_{1/2}^{(-)} | \hat{j}_{+} | \mathcal{F}_{-1/2}^{(-)} \right\rangle$

$$\pi_{gs} = (+) \Rightarrow a = a^{(+)}$$

$$\pi_{gs} = (-) \Rightarrow a = -a^{(-)}$$

Global deformed shell model calculations in the (β_2, β_3) - plane

- Dependence of the s.p. angular momentum projection K and the s.p. parity mixing on quadrupole-octupole deformations
- Behaviour of the Coriolis decoupling factor in the (β_2, β_3) -plane
- Effects on the collective parity-doublet spectra
- Favourable deformation regions and quadrupole-octupole collectivity

Parity-mixing effects in the (β_2, β_3) - plane $\bullet 000000000$

Conclusion

Study of parity mixing and projected decoupling factors

K-values for the odd nucleon of ²¹⁹Ra in the (β_2, β_3) plane

Parity-mixing effects in the (β_2, β_3) - plane 00000000

Conclusion

Study of parity mixing and projected decoupling factors

Decoupling factor a^+ in ²¹⁹Ra (3D plot)

Parity-mixing effects in the (β_2, β_3) - plane 00000000

Conclusion

Study of parity mixing and projected decoupling factors

Decoupling factor a^+ and average parity $\langle \pi_{sp} \rangle$ in 219 Ra

Parity-mixing effects in the (β_2, β_3) - plane 00000000

Conclusion

Study of parity mixing and projected decoupling factors

Split parity-doublet spectrum in ²¹⁹Ra

Parity-mixing effects in the (β_2, β_3) - plane 00000000

Conclusion

Study of parity mixing and projected decoupling factors

Decoupling factor a^+ in ²²⁵Ra (3D plot)

Decoupling factor a⁽⁺⁾ in ²²⁵Ra

Parity-mixing effects in the (β_2, β_3) - plane 000000000

Conclusion

Study of parity mixing and projected decoupling factors

Decoupling factor a^+ and average parity $\langle \pi_{sp} \rangle$ in ²²⁵Ra

Parity-mixing effects in the (β_2, β_3) - plane 000000000

Conclusion

Study of parity mixing and projected decoupling factors

Split parity-doublet spectrum in ²²⁵Ra

Parity-mixing effects in the (β_2, β_3) - plane 000000000

Conclusion

Study of parity mixing and projected decoupling factors

Decoupling factor a^+ and average parity $\langle \pi_{sp} \rangle$ in 225 Th

Parity-mixing effects in the (β_2, β_3) - plane 000000000

Conclusion

Study of parity mixing and projected decoupling factors

Decoupling factor a^+ in ²⁴¹Cm (3D plot)

Decoupling factor a⁽⁺⁾ in ²⁴¹Cm

Parity-mixing effects in the (β_2, β_3) - plane 00000000

Conclusion

Study of parity mixing and projected decoupling factors

Decoupling factor a^+ and average parity $\langle \pi_{sp} \rangle$ in ²⁴¹Cm

CONCLUSION

- Model of quadrupole-octupole vibrating and rotating core plus particle → new coupling scheme with parity mixed s.p. states
- Parity mixing \rightarrow complex behaviour of $\langle \hat{\pi}_{sp} \rangle$ in the (β_2, β_3) plane without saturation to $\langle \hat{\pi}_{sp} \rangle = 0$ with increasing $\beta_3 \rightarrow$ (wide ranges of approximately good "dominant" parity)
- Coriolis decoupling factor → strong dependence on β₃ and β₂ deformations; comparison to the collective model → regions of physically reasonable deformations in the (β₂, β₃) plane
- Consistent collective and microscopic model description of the split parity-doublet spectra in odd-mass nuclei