Selection rule for electromagnetic transitions in the chiral geomtry

Ikuko Hamamoto

Mathematical physics, LTH, University of Lund, Sweden

Chirality in triaxial nuclei is characterized by the presence of noncoplanar 3 angular-momentum vectors.

[^0]
In chiral geometry

Observed states $\quad|I+\rangle=\frac{1}{\sqrt{2}}(|I L\rangle+|I R\rangle)$

$$
|I-\rangle=\frac{i}{\sqrt{2}}(|I L\rangle-|I R\rangle)
$$

If no tunneling between L and R, then $|I+\rangle$ and $|I-\rangle$ are degenerate.

For l» $1 \quad(|R| » 1)$

$$
\begin{aligned}
& \langle I L| E 2|I R\rangle \approx 0 \\
& \langle I L| M 1|I R\rangle \approx 0
\end{aligned}
$$

Then, for $E M=E 2$ or $M 1$

$$
\vec{I}=\vec{R}+\vec{j}_{n}+\vec{j}_{p}
$$

$$
\begin{aligned}
& B\left(E M ; I^{\prime}+\rightarrow I+\right) \approx B\left(E M ; I^{\prime}-\rightarrow I-\right) \\
& B\left(E M ; I^{\prime}+\rightarrow I-\right) \approx B\left(E M ; I^{\prime}-\rightarrow I+\right)
\end{aligned}
$$

(Thinking of odd-odd nuclei such as ${ }^{130}{ }_{55} \mathrm{Cs}_{75}$,)

A simple particle-rotor model

Core with $\gamma=+90^{\circ}$ (equivalently, $\gamma=-30^{\circ}$ in Lund convention), assuming the γ-dependence of $J_{\text {hydro }}$

$$
H_{\text {rot }}=\sum_{k} \frac{\hbar^{2}}{2 J_{k}} R_{k}^{2} \Rightarrow \frac{\hbar^{2}}{8 J_{0}}\left(R_{3}^{2}+4\left(R_{1}^{2}+R_{2}^{2}\right)\right)
$$

Note the triaxial shape;

$$
\left\langle r_{2}^{2}\right\rangle<\left\langle r_{3}^{2}\right\rangle<\left\langle r_{1}^{2}\right\rangle
$$

One proton-particle in $j\left(=h_{11 / 2}\right)$ shell for $\mathrm{\gamma}=+90^{\circ}$

$$
V_{s p}^{\pi} \propto\left[3 j_{3}^{2}-j(j+1)\right] \cos \gamma+\sqrt{3}\left(j_{1}^{2}-j_{2}^{2}\right) \sin \gamma \Rightarrow\left(j_{p 1}^{2}-j_{p 2}^{2}\right)
$$

One neutron-hole in $j\left(=h_{11 / 2}\right)$ shell for $\mathrm{\gamma}=+90^{\circ}$

$$
V_{s p}^{v} \propto\left[3 j_{3}^{2}-j(j+1)\right] \cos \gamma+\sqrt{3}\left(j_{1}^{2}-j_{2}^{2}\right) \sin \gamma \Rightarrow\left(j_{n 2}^{2}-j_{n 1}^{2}\right)
$$

Note that in respective Hamiltonians the energetically preferred directions are ;

$$
\vec{j}_{p} / / \pm \underset{\text { (s-axis) }}{ \pm \text { 2-axis, }} \quad \vec{j}_{n} / / \pm \underset{\text { (l-axis) }}{1 \text {-axis, }} \quad \vec{R} / / \pm \underset{\text { (i-axis) }}{3 \text {-axis }}
$$

However, the energy minimum for a given total angular momentum

$$
\vec{I}=\vec{R}+\vec{j}_{p}+\vec{j}_{n}
$$

Triaxial one-body potential

$$
\begin{equation*}
\mathrm{V}(\mathrm{r}, \theta, \phi)=\mathrm{k}(\mathrm{r}) \beta\left\{\mathrm{Y}_{20} \cos \gamma+\frac{1}{\sqrt{2}}\left(Y_{22}+Y_{2-2}\right) \sin \gamma\right\} \tag{1}
\end{equation*}
$$

For a single-j shell
$(1) \longrightarrow \frac{\kappa}{j(j+1)}\left\{\left[3 j_{3}^{2}-j(j+1)\right] \cos \gamma+\sqrt{3}\left(j_{1}^{2}-j_{2}^{2}\right) \sin \gamma\right\}$
where we use, for example,

$$
\frac{\langle j, \Omega| Y_{20}|j, \Omega\rangle}{\langle j, \Omega+2| Y_{22}|j, \Omega\rangle} \propto \frac{\langle j, \Omega| 3 j_{3}^{2}-j(j+1)|j, \Omega\rangle}{\langle j, \Omega+2| j_{+}^{2}|j, \Omega\rangle}
$$

Invariance properties of $H=H_{r o t}+V_{s p}^{\pi}+V_{s p}^{v}$

1) D_{2} symmetry $\rightarrow \quad R_{3}=0, \pm 2, \pm 4, \ldots \ldots$

$$
\begin{gathered}
H_{r o t} \propto R_{3}^{2}+4\left(R_{1}^{2}+R_{2}^{2}\right) \\
V_{s p}^{\pi}+V_{s p}{ }^{v} \propto\left(j^{2}{ }_{p 1}-j^{2}{ }_{p 2}\right)+\left(j^{2}{ }_{n 2}-j^{2}{ }_{n 1}\right)
\end{gathered}
$$

2) Invariant under the operation A :
2.1) rotation $\exp \left(i\left(\frac{\pi}{2}\right) R_{3}\right) \quad$ or $\quad \exp \left(i\left(\frac{3 \pi}{2}\right) R_{3}\right) \quad$ combined with
2.2) charge symmetry $\quad[C: n \leftrightarrow p]$

$$
C=+1 \quad \text { symmetric for } n \leftrightarrow p
$$

- 1 anti-symmetric for $n \leftrightarrow p$,
\therefore Eigenstates of \boldsymbol{H} have quantum-number $A= \pm 1$.

Eigenstates of \boldsymbol{H} are

$$
A=+1\left\{\begin{array}{l}
R_{3}=0, \pm 4, \pm 8, \ldots \& \quad C=+1 \\
R_{3}= \pm 2, \pm 6, \ldots
\end{array} \& \quad C=-1 \quad A=-1 \quad\left\{\begin{array}{l}
R_{3}=0, \pm 4, \pm 8, \ldots \& C=-1 \\
R_{3}= \pm 2, \pm 6, \ldots
\end{array} \quad \& C=+1\right.\right.
$$

Selection rule for E2 transitions

Core contributions only are considered, then, in order to have $\mathrm{B}(\mathrm{E} 2) \neq 0$;

$$
\left\{\begin{array}{lll}
\Delta \mathrm{C}=0 & \because) & \text { Neutron and proton are spectators. } \\
\Delta R_{3} \neq 0 & \because) & \mathrm{y}=+90^{\circ} \rightarrow\left[\mathrm{E} 2 \text { matrix elements with } \Delta R_{3}=0\right]=0
\end{array}\right.
$$

$$
B(E 2)=0 \text { for } \Delta A=0
$$

Selection rule for M1 transitions

$\left.\left.(M 1)_{\mu}=\sqrt{\frac{3}{4 \pi}} \frac{e \hbar}{2 m c} \underline{\left(g_{\ell}-g_{R}\right.}\right) \ell_{\mu}+\left(\underline{g_{s}^{e f f}-g_{R}}\right) s_{\mu}\right)$
where $\quad \underline{g_{\ell}-g_{R}}=0.5(-0.5) \quad$ and $\quad \underline{g_{s}^{\text {eff }}-g_{R}}=2.848(-2.792)$ for $p(n)$.

Then, $\mathrm{B}(\mathrm{M} 1) \approx 0$ for $\Delta C=0 \quad \because) \mathrm{M} 1$ is almost "antisymmetric" under $\mathrm{p} \leftrightarrow \mathrm{n}$

Since $\mathrm{B}(\mathrm{M} 1)=0$ for $\left|\Delta R_{3}\right| \geq 2$,
$[B(M 1)$ with $\Delta A=0]$ « $[B(M 1)$ with $\Delta A \neq 0]$

$$
A=+1\left\{\begin{array}{l}
R_{3}=0, \pm 4, \pm 8, \ldots \text { \& } \\
R_{3}= \pm 2, \pm 6, \ldots
\end{array} \& \quad C=+1 \quad A=-1 \quad\left\{\begin{array}{l}
R_{3}=0, \pm 4, \pm 8, \ldots \& \quad C=-1 \\
R_{3}= \pm 2, \pm 6, \ldots
\end{array} \quad \& \quad C=+1\right.\right.
$$

If ideal chiral partner bands appear in the present model

$$
C|L>\propto| R>\quad \text { and } \quad C|R>\propto| L>
$$

Since the rotation, $\exp \left[i\left(\frac{\pi}{2}\right) R_{3}\right]$ or $\exp \left[i\left(\frac{3 \pi}{2}\right) R_{3}\right]$, does not affect chirality,

$$
A|L>\propto| R>\quad \text { and } \quad A|R>\propto| L>
$$

Thus, two degenerate states, $\mid I+>$ and $\mid I->$, have different eigenvalues of A

$$
A||+>= \pm|/+>\quad \leftrightarrow \quad A||->=\mp| \mid->
$$

When bands are arranged so that $\Delta I=2$ E2 transitions are always allowed within respective bands, the sign of A
 in a given band must change at every increase of 1 by 2 .
: allowed E2 (with $\Delta I=1$ and 2) and stronger M1 (with $\Delta I=1$) transitions.
: much weaker $\Delta \mathrm{I}=1 \mathrm{M} 1$ transitions.

$\vec{I}=\vec{R}+\vec{j}_{n}+\vec{j}_{p}$
A numerical diagonalization of \boldsymbol{H} with

$$
\begin{aligned}
& \left\{\begin{array}{l}
j_{n}=j_{p}=h_{1 / 2} \\
J_{0}=8.55 \quad \hbar^{2} / \mathrm{MeV}
\end{array}\right. \\
& (A=130, Z=55, \beta=0.3)
\end{aligned}
$$

$1:$ large ($|\vec{R}|:$ large)

$$
\vec{j}_{n} \vec{R}^{\uparrow} / \vec{j}_{p}
$$

Chiral geometry ?

${ }^{134}{ }_{59} \mathrm{Pr}_{75}$

Band 1 EXP Band 2

In the "partner" bands;
(1) Measured $B(E 2$: $|\rightarrow|-2)$ values differ by a factor of 2 .
(2) Measured inband $B(M 1)$ values are large, while the interband $B(M 1)$ values are small.

```
Petrache, Hagemann, Hamamoto and Starosta, PRL 96, 112502 (2006)
```

In a totally independent study with other data:

$$
Q_{0}(1) / Q_{0}(2)=2.0 \pm 0.4
$$

is obtained from the analysis of the two-bands crossing at $\mathrm{I}=15-16$, using measured

$$
B(E 2, I \rightarrow I-2)_{\text {out }} / B(E 2, I \rightarrow I-2)_{\text {in }} \text { values. }
$$

Used data : GS2K009 Collaboration; K.Starosta et al., AIP Conf. Proc. No. 610 (AIP, New York, 2002), p. 815

E.Grodner et al., PRL, 97, 172501 (2006)

Analysis of ${ }^{134} \mathrm{Pr}_{75}$ data around $\mathrm{I}=14-18$

1) Energies

I	14	15	16	17	18
$E(I)_{n y}-E\left(I_{y}\right.$ in keV	163	36	44	118	173

2) In the case of two-bands (bands 1 and 2) mixing, the $B(E 2)$ ratios

$$
\frac{\mathrm{B}(\mathrm{E} 2, \mathrm{I} \rightarrow \mathrm{I}-2)_{\text {out }}}{\mathrm{B}(\mathrm{E} 2, \mathrm{I} \rightarrow \mathrm{I}-2)_{\text {in }}} \quad \text { should be equal for the yrast and non-yr stats, if } \quad Q_{0,1}=Q_{0,2}
$$

In contrast, measured values (K.Starosta et al.) are
y

y
ny

y
ny
3) Assuming two-bands (1 and 2) crossing,

$$
\begin{align*}
& |y\rangle=\alpha_{I}|1\rangle+\sqrt{1-\alpha_{I}^{2}}|2\rangle \tag{a}\\
& |n y\rangle=\sqrt{1-\alpha_{I}^{2}}|1\rangle-\alpha_{I}|2\rangle \tag{b}
\end{align*}
$$

We obtain

$$
\begin{align*}
& \frac{B\left[E 2, I^{n y} \rightarrow(I-2)^{y}\right]}{B\left[E 2, I^{n y} \rightarrow(I-2)^{n y}\right]}=\left(\frac{Q_{0,1} \alpha_{I-2} \sqrt{1-\alpha_{I}^{2}}-Q_{0,2} \alpha_{I} \sqrt{1-\alpha_{I-2}^{2}}}{Q_{0,1} \sqrt{1-\alpha_{I-2}^{2}} \sqrt{1-\alpha_{I}^{2}}+Q_{0,2} \alpha_{I} \alpha_{I-2}}\right)^{2} \tag{c}\\
& \frac{B\left[E 2, I^{y} \rightarrow(I-2)^{n y}\right]}{B\left[E 2, I^{y} \rightarrow(I-2)^{y}\right]}=\left(\frac{Q_{0,1} \alpha_{I} \sqrt{1-\alpha_{I-2}^{2}}-Q_{0,2} \alpha_{I-2} \sqrt{1-\alpha_{I}^{2}}}{Q_{0,1} \alpha_{I} \alpha_{I-2}+Q_{0,2} \sqrt{1-\alpha_{I}^{2}} \sqrt{1-\alpha_{I-2}^{2}}}\right)^{2} \tag{d}
\end{align*}
$$

On the other hand, for a given I

$$
\begin{equation*}
\frac{2 V}{\Delta E_{I}}=\sin \left(2 \sin ^{-1}\left(\alpha_{I}\right)\right) \tag{e}
\end{equation*}
$$

where V : interaction strength between bands 1 and 2, ΔE_{1} : observed level spacing for I

Observed $B(E 2)$ ratios, (c) and (d) Observed $\Delta \mathrm{E}_{1}$ in (e)

$$
\longrightarrow\left\{\begin{array}{l}
V, \alpha_{1} \\
\left(\mathrm{Q}_{0,1} / \mathrm{Q}_{0,2}\right)
\end{array}\right.
$$

Relatively large ambiguity in measured $B(E 2)$ ratios !

Interaction analysis - odd spins

$V \sim 13.5 \mathrm{keV}$

Interaction analysis - even spins

$V \sim 16.5 \mathrm{keV}$

$$
Q_{0,1} / Q_{0,2}=2.0 \pm 0.4
$$

We have obtained a possible range of V and $Q_{0,1} / Q_{0,2}$
$V \sim 13.5 \mathrm{keV}$ for odd I bands
$V \sim 16.5 \mathrm{keV}$ for even I bands
$Q_{0,1} / Q_{0,2}=2.0 \pm 0.4$

Comparison of exp and calculated values of $B(E 2, I \rightarrow I-2)_{\text {out }} / B(E 2, I \rightarrow I-2)_{\text {in }}$ in the crossing region of the pair bands in ${ }^{134} \mathrm{Pr}$.
Using $Q_{0,1} / Q_{0,2}=2$, we obtain

I	$\begin{aligned} & \mathrm{E}_{\mathrm{v}, \text { out }} \\ & (\mathrm{keV}) \end{aligned}$	$\begin{gathered} \mathrm{E}_{\mathrm{y}, \mathrm{in}} \\ (\mathrm{keV}) \end{gathered}$	$B(E 2)_{\text {out }} / B(E 2)_{\text {in }}$		$\underset{(\mathrm{keV})}{\|\mathrm{V}\|}$	α_{1}
17ny	991	1027	0.3(1)	0.30	13.5	0.114
17y	909	873	0.6(1)	0.61	13.5	-
15^{y}	671	892	O(1)	0.030	13.5	0.905
15ny	928	707	1.1(5)	0.79	13.5	-
18ny	1113	1069	0.22(9)	0.16	16.5	0.096
18 ${ }^{\text {y }}$	896	940	< 0.08	0.060	16.5	-
16ny	813	976	0(1)	0.11	16.5	0.411
$16{ }^{\text {y }}$	933	770	1.3(3)	1.23	16.5	-

Exp data from K.Starosta et al.
$\mathrm{V} \sim 15 \mathrm{keV} \rightarrow$ a large difference in the structure of the two bands ;
ex. a large shape difference?
their chiral character? a difference in some other quantum numbers?

Obs. $V \sim 15 \mathrm{keV}$ is obtained in many cases from the crossing between SD and ND bands in the decay-out region for A ~ 130 nuclei. (Gudrun)
$Q_{0,1} / Q_{0,2} \sim 2.0 \rightarrow$ the shapes of nearly deg. bands in ${ }^{134} \operatorname{Pr}$ are very different.
Thus, they cannot be interpreted as chiral bands.

For a given I ; $\quad|y\rangle=\alpha|1\rangle+\sqrt{1-\alpha^{2}}|2\rangle$

$$
|n y\rangle=\sqrt{1-\alpha^{2}}|1\rangle-\alpha|2\rangle
$$

Writing interaction matrix element $V, \quad\left(H_{11}-E_{y}\right) \alpha+V \sqrt{1-\alpha^{2}}=0$

$$
\begin{aligned}
& V \alpha+\left(H_{22}-E_{y}\right) \sqrt{1-\alpha^{2}}=0 \\
& \left(H_{11}-E_{n y}\right) \sqrt{1-\alpha^{2}}-V \alpha=0 \\
& V \sqrt{1-\alpha^{2}}-\left(H_{22}-E_{n y}\right) \alpha=0
\end{aligned}
$$

One obtains

$$
\begin{aligned}
& E_{y / n y}=\frac{1}{2}\left[\left(H_{11}+H_{22}\right) \mp \sqrt{\left(H_{11}-H_{22}\right)^{2}+4 V^{2}}\right] \quad \text { and } \\
& \frac{H_{11}-H_{22}}{V}=-\frac{\sqrt{1-\alpha^{2}}}{\alpha}+\frac{\alpha}{\sqrt{1-\alpha^{2}}}=-\frac{\cos (x)}{\sin (x)}+\frac{\sin (x)}{\cos (x)}=\frac{-2}{\tan (2 x)}
\end{aligned}
$$

where $\quad x \equiv \sin ^{-1}(\alpha)$
Then,

$$
\frac{2 V}{E_{n y}-E_{y}}=\sin (2 x)=\sin \left(2 \sin ^{-1}(\alpha)\right)
$$

[^0]: S.Frauendorf and J.Meng, Nucl.Phys., A617, 131 (1997)

