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Intuition of intrinsic frame

It is expected that the intrinsic frame:
e excludes contributions from global translational motion;
e introduces rotational degrees of fredom explicitely;
e shows intrinsic symmetries of nuclei;
e separates different kinds of intrinsic motions (sometimes).
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Microscopic laboratory frame

(L.C. Biedernharn, J.D. Louck, Angular Momentum
in Quantum Physics)

e Denote by
X(n) = (xa(n), (x2(n), x3(n)),
where n =1,..., A the it" radius vector of n-th particle in R3.
e The position vector in the configuration space for A-nucleons is:

x = (X(1),X(2),X(3),...,X(A)).
e The laboratory frame basic, orthonormal unit vectors:

Wb, .
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Microscopic intrinsic frame 1/6

e The orthonormal versors of intrinsic frame:
f(%(1),%(2),....X(A))

where k = 1,2, 3 are dependent on distribution of nucleons in
the space.

e They should satisfy the conditions which allow to interpret the
versors as some global vectors fixed to the nucleus (R € O(3)):

f(%(1) +3,%(2) + 3,... K(A)+3) =
f(%(1),%(2), ..., X(A))
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Microscopic intrinsic frame 2/6

The frame non—singularity condition:

of.  of  of, .
(aX]_(n)7 8x2(n)’ 8x3(n)’) ié O’

for any i and all n.

The position vectors of the individual particles in the center of
mass frame:

¥(n) = X(n) — Rew.

The laboratory vector components (fixed in the space) of y(n)
can be calculated by projections onto the laboratory frame are

given:
[F(n)] ™ = y(n) - I.
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Microscopic intrinsic frame 3/6

e The intrinsic components of y(n) are projections onto the
intrinsic versors:

[F(m]E™ = 7(n) - fi(x).

yi(n)

e IMPORTANT:
the intrinsic coordinates:

¢ yk(n) are not single particle coordinates (problem with MF
theories))

¢ yk(n) are O(3) invariant.
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Microscopic intrinsic frame 4/6

Intrinsic variables {gs} are functions of O(3) invariants:

gs = hs(y1(1), y2(1), y3(1), .. -, y1(A), y2(A), y3(A)),

where s =1,2,...,3A—6.
The center of mass condition

Z mnyk(n) =0

n=1

Rotational variables €2 determined by scalar products:

—

ka(Q) = FI;(X) I

3 appropriate conditions for y,(n) = ¥(n) - fi(x) required.
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Microscopic intrinsic frame 5/6

REMARK:

e The above 3 additional conditions for {yx(n)} often allow to
write the inverse relations (Eckhart, molecular physics):

yk(n) - gk(n; aqi, qz, ..., q3A—6)

If well defined no SYMMETRIZATION GROUP !
This is not the case of most models in nuclear physics.
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Microscopic intrinsic frame 6/6

Example: for fixed {Tk} the 3 conditions determine the Euler angles
Q between the laboratory and intrinsic frames:

x(n) = R™+ Z Di(Q2)yx(n),

—

= ROQMHAGF),....7(A)
IMPORTANT: in general,the rotational variables €2, for the frames

defined by Biedernharn an Louck always determines global rotation
(total angular momentum) of the system.
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Intrinsic groups G

Jin-Quan Chen, Jialun Ping & Fan Wang: Group Representation
Theory for Physicists, World Scientific, 2002. Def. For each element
g of the group G, one can define a corresponding operator g in the
group linear space L as:

gS = 5g, forall S € Lg.
The group formed by the collection of the operators g is called the
intrinsic group of G.
IMPORTANT PROPERTY:
[G,G] =0
The groups G and G are antyisomorphic.
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Surface collective variables

The equation of nuclear surface in the laboratory frame is:

R(9, ) = (1 +Z a2 Yy, (0 ¢>)>

The collective intrinsic variables a/%” are spherical tensors in respect
to G.
The equation of nuclear surface in the intrinsic frame is:

R, ¢') = <1 + Z% Yy, & ))

The collective intrinsic variables ), are spherical tensors in respect
to G.
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Intrinsic variables

lab

e Laboratory frame — {qy,}.

e Intrinsic frame — g,

Transformation from laboratory to intrinsic frame:
o N variables to N variables transformation ?

q°* — (q,9),

e Three additional conditions required:

Fi(g,Q2) =0, i=1,23.

The conditions define physical meaning of Euler angles.
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Uniqueness of quantum states

In practice, the transformation to intrinsic frame is not always
reversible because of insufficient number of required conditions, an
important problem is to find this ambiguity.

If

(9.9) — ¢
£(¢.9) =(q"2) — ¢
V(g.Q) = V(™)

(9.9) = V(q,Q)=v(g")
CONTRADICTION; generally W(q,Q) # W(q', )

{&} form the SYMMETRIZATION GROUP Gy,
The symmetrization condition. For all & € Gy

gV(q,Q) = V(q,Q)

then the states
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The group of symmetrization 1/3

1. Let us consider the standard quadrupole case of the collective
variables aipg, (ipp, 2. This definition of intrinsic variables requires 3

conditions
Qopp1 = 0 and Qp_o = Qipp € R.

These requirements give the following set of equations:

Dzzo(g) =0
D£2|:1,—2(g) + Dil,z(g) =0
D?50(8) + D2, _5(g) + D?,,(8) = D3(g) + D;_»(g) + D3,(g)-

The symmetrization group is:

g € Oy
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The group of symmetrization 2/3

2. Another intrinsic variables (o, a1, Q2).

The intrinsic frame defined as: as4> = 0 and an; = —an_1.

It leads to the equations for allowed rotations:

Dﬂ:20(g) =0

Diz (&) — Di2 (g) = 0

Dlzo(g) o(g) 0
D121(g) D12 1(g) = Dzl—l(g) - Dzll(g)'

The symmetrization group is:

g € Doy
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The group of symmetrization 3/3

2. The quadrupole+octupole model. The intrinsic variables
(0420, Q21, {a3u}7 Q)-
The intrinsic frame defined as: ax = az 5 and ap 11 = 0.

The symmetrization group is:

g€
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Maximal realization of O(3) group

e ay, are O(3) tensors.
e The action of O(3) group is restricted by the additional
conditions required for the intrinsic frame.

e In fact, the appropriate subgroup G C O(3) is allowed to act in
the intrinsic frame.
This subgroup has to leave invariant the conditions

Fi(gq,Q2) =0, i=1,23.
Example: for quadrupole case
o1 = 0 and as_s» = as € R.

These conditions allow for G = O.
In the case of Bohr's type models the SYMMETRIZATION group
and MAXIMAL realization of O(3) coincides.
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Symmetry operations in the intrinsic frame

The operations allowed in the intrinsic space:
o All operations which fulfil the conditions

Fi({ox.}, ) =0, i=1,2,3.

which save the structure of the intrinsic variables space.
e An example 1.: MAXIMAL realization of O(3)
e An example 2.: for quadrupole+octupole case and the intrinsic
frame
as+1 =0 and ap_2 = axp € R.
the transformations of SO(3)
OCTUPOLE variables:

ozgu = Z Di,#(f)oz3“,
W

type which ACT only on

oct

fulfil the required conditions.
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The schematic model
The model Hamiltonian:
7:(2+3 = ﬂvib + 7'Alrot

No coupling terms.
The eigenfunctions:

Ve (@, Q) = érs(a@)Rumn(Q)

The reduced (in respect to the quantum number M) matrix
elements:

e || QL) =3 (ér] Qualérs) (R D[R
1"

The reduced probability:
B(EX; (TJv) — (I'JV)) = {T'JV||Qy||TIV)|? /(2 + 1)
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Bohr Hamiltonian

ﬂBohr = ﬁvib;2(ﬁa 7) + ﬂrot(Q) + ﬂvr(ﬁ: e Q)

where
~ 1 10,0 1 @ 9

rot—_
k 123

Vibrational part Hv,bz = O, - OCTAHEDR.
Rotational part H,ot = D,), symmetry.

- - 1 J;
Hrot + Hor = § - > £ .
80% L3 4sin’(y — (21/3)k)

Gph = Dy, because Gup =0, and G = Dop,
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Quadrupole + Octupole model

T = Hun(B,7, a3) + Heot(Q) + Hur(8, 7, 03,9)
where the vibrational Hamiltonian:
How = Tun2(B,7) + Tua(as) + Vi (8,7, as)
Here:
Gph =Daon,  Guip=On, Grot =Dan, Gur =Dap

AGAIN: THE COLLECTIVE VIBRATIONS HAVE OCTAHEDRAL
SYMMETRY.
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The symmetrization problem 1/2

e The physical state space:
K={¢(a,Q): g¢p =9, forall g € Gy}

e The collective hamiltonians 7 are defined in wider space Kol
e 3 possible procedures:
e Project the hamiltonian H: 7:(;C = P;C7‘A(P;C. and solve it in IC

IMPORTANT:PiHPx has the symmetry of the
symmetrization group Gsym, e.g. OCTAHEDRAL

e Solve H in Koy and choose solutions belonging to K (*)
e Solve H in Ko and symmetrize the solutions.

Which procedure is physical 7
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The symmetrization problem 2/2

The 3 procedure are not equivalent:
e "Projection”. Assume

H|w) = Elv)

then for Pc|y) = |¢) € K

PcHPcl) = El)
i.e. the Ggy,-symmetrical solutions of H are also solutions of
PxH Py

e H + symmetrical solutions. Assume

PcHPcl') = E'[¢)

then in general
A’y = E'') + [0L) # [v').

i.e. the projected hamiltonian can provide more solutions than
H 1tself. 25 /36



Meaning of intrinsic symmetries 1/2

WEAK vibration+rotation coupling
Bohr's type collective models (a*® — (o, Q)).

7:{ = 7:Zvib + ﬂrot
! ! |

Gph c G'x@G" - GH = Gup X Gt
Il | ! ! |
r o 'xIl" o,xo0g ry I,

where due to weak coupling assumption:
[ﬁvib7 ﬂrot] - 07
Gph ~ G C Gvib and Gph ~G" C Grot

26
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Meaning of intrinsic symmetries 2/2

Example: let g, € G, such that g,a = o/ the meaning of the
transformation can be found:

e transformation to the laboratory frame and recognizing the
transformation of the nuclear surface.

lab

’
a — alb O/—>Oé(/ab)

e using intrinsic frame reprezentation of the nuclear surface
directly:

R(0',¢') = Ry (1 +) a, Yt ¢’)>
Ap

R, ) = Ro (1 + 3 (ga)i, Yaul®. ¢'))

Ap
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156G vs. 196 Dy

SIMPLE DEFORMED
QUADRUPOLE-OCTUPOLE
HARMONIC MODEL
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Vibrational collective functions 1/2

(J.Phys. G: Nucl. Part. Phys. 37 (2010) 064032)
The quadrupole state:

|q> = T(d2075422)|0>7

where |0) is the quadrupole—octupole vacuum (the Gauss function)
and 7 ({&m}) is the shift operator in the deformation space:

T({am})f({eim) = f({tm — dim})

The normalization coefficients after projection ont parity:

2
N(+) —
: \/ T+ exp(12E)

N 2
1 1+ exp(—n5€2)(1 — 2n3¢?)

29 /36



Vibrational collective functions 2/2

The tetrahedral states — basis of i.r. of Ty:

A1) = 05 N1 = )T (%) (55— B 2)1)
T1:1) = 0.5 {7 (1 — G)T (85,)—= (L, + b}_,)|0)
( \/—bgl + \/_b3 3)[0)
(»f@1+Jw)m
\TZD:OBMHG—%DTWQWMm
1T2;2) =05 NS(1 — G)T (&%) (fsbg,l +/5b5,)]0)

(\/_b§1+\/_b3 3)[0)
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T1:2) = 05 NS (1L — C)T (&) —

%I

1T1;3) =05 NSP(1 — G)T(84)—=

QI

x|~

1T2;3) =05 NSP(1 — G)T(&4,)—=

Ql



Vibrational matrix elements 1/2

Static quadrupole-quadrupole:

3ZR§ . 20 _
<CI|Q22|Q>— i (0622—7@06200622)

3ZR§ . 1 10, 20 2
(q|Qxlq) = ypm (¢ + \/5—ﬂ(70420 -tz 377§)

Here:

TN
M = 5 Fs

_ \/33“3_ G
G
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Vibrational matrix elements 2/2
Static tetrahedr-tetrahedr:

ZR? 1
Al|Qyl|Al) = ——2_ =
< | 20| > 27’(’\/5—71'77%
ZR? 1
TL1Qu|TLL) = ——2=
< | 20| > 27’(’\/5—71'77%
ZR? 1
T2;1|Qu|T2;1) = —2=—
< | 20| > 271_\/5—71_77?2’

Dependence on zero-point motion only.
Relation between the quadrupole operator diagonal matrix elements:

10

3ZR?
(10u) = 2 (0 + (e - 205) ) = 1161 Qult)
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Spectrum °°Dy, Argone 2009
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Harmonic model: results for 1°°Dy

ARGONE measurements.

A =156, Z =66

e qudrupole: 3 =0.293, v = 1 degree, n, = 14

e octupole: £ =0.12, n3 =8

e Q20 for quadrupole band = 670 €? fm*

e B(E1;T1—q)~5-107% B(E2;T1— T1)~5-1073

B(E2;T1—T1) 2

e B(EL;T2—¢q)~1-10"% B(E2; T2 — T2)~5-103

B(E2;T2—T2) 3 2
BERT2g) 9107 fm

where BEX in W.u.
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Harmonic model: results for 1°°Gd

GRENOBLE measurements.

A =156, Z = 64

qudrupole: 3 =0.23, v = 10 degree, 17, = 12
octupole: £ =0.12, n3 = 0.515

Q20 for quadrupole band = 788 e? fm*
B(E1;T1—q)~7-1073% B(E2; T1 — T1) ~ 298

B(E2;T1—T1) 6 £ 2
B(EL,T1—q) 1-10% fm

B(E1; T2 — q) ~ 0.2; B(E2; T2 — T2) ~ 298

B(E2;T2—T2) 3 2

where BEX in W.u.
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SUMMARY
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