Microscopic Cluster Model

Marianne Dufour¹

17th Nuclear Physics Workshop - Kazimierz September 22th/26th-2010

1 Collaboration: P. Descouvement - U.L. Bruxelles and Acc

- Overview of the Theoretical Framework
- Microscopic Cluster Model Applications
 - Nuclear Astrophysics: the ${}^{12}C(\alpha, \gamma){}^{16}O$ E2 cross section
 - Molecular Band in the ¹²Be nucleus
 - Unbound system: the ¹⁶B nucleus case

◆□ → ◆ □ → ◆ □ → ◆ □ → ◆ □ →

Overview of the Theoretical Framework

 $(1) + (2) \longrightarrow (1,2) \longrightarrow \dots$

A = A1 + A2

We approximatively solve the Schrödinger equation of a *A*-nucleon system with the Generator Coordinate Method combined with the Microscopic R-Matrix Method to determine:

- Cross Sections (Elastic, Radiative Capture, Transfer reaction, etc)
- Physical properties of the unified (1,2) nucleus (Spectrocopy, etc)

(日) (同) (E) (E) (E) (E)

Microscopic Hamiltonian

$$\mathcal{H} = \sum_{i}^{A} T_{i} + \sum_{i < j=1}^{A} \left(V_{ij}^{NN} + V_{ij}^{SO} + V_{ij}^{Coul} \right)$$

• Central part: combination of Ng Gaussian form factors

$$V_{ij}^{NN}(r) = \sum_{k=1}^{N_g} V_{0k} \exp(-(r/a_k)^2) (w_k - m_k P_{ij}^{\sigma} P_{ij}^{\tau} + b_k P_{ij}^{\sigma} - h_k P_{ij}^{\tau}).$$

- Volkov, Minnesota forces One free parameter
- Extended Volkov Interaction Two free parameters²
- V^{SO}, Spin-Orbit force One free parameter
- V^{Coul}, Coulomb force Exactly treated

Two Cluster Model Basis State

- A Cluster is an Harmonic Oscillator Potential.
- All quantum numbers are exactly treated.
- R: Generator Coordinate

◆□▶ ◆□▶ ◆ □▶ ◆ □ ▶ ● ● ● ● ●

In partial (JM, π) vawe, the total WF can be written as:

$$\Psi^{JM\pi} = \sum_{c\ell l} \Psi^{JM\pi}_{c\ell l} = \sum_{c\ell l} \mathcal{A} \quad g^{J\pi}_{c\ell l}(\rho) \quad \varphi^{J\pi}_{c\ell l}$$

- \mathcal{A} is the A-nucleon antisymmetrizor.
- c labels the various channels ($\mathbf{J} = \mathbf{I} + \ell$, $\mathbf{I} = \mathbf{I}_1 + \mathbf{I}_2$)
- $g_{c\ell l}^{J\pi}(\rho)$ are the radial functions.

•
$$\varphi_{c\ell I}^{J\pi} = \left[\left[\phi_c^{I_1} \otimes \phi_c^{I_2} \right]^I \otimes Y_{\ell}(\Omega_{\rho}) \right]^{JM}$$
, are the channel WFs.

• $\phi_c^{l_1}$ and $\phi_c^{l_2}$ are the internal WFs of (1) and (2), defined from Slater Determinants involving the two clusters.

同ト・モン・モン

Generator Coordinate Method (GCM) WF

In partial (*JM*, π) vawe, the total WF can be written as:

$$\Psi^{JM\pi} = \sum_{c\ell l} \Psi^{JM\pi}_{c\ell l} = \sum_{c\ell l} \int f^{J\pi}_{c\ell l}(R) \Phi^{JM\pi}_{c\ell l} dR,$$

• *R* is the generator coordinate.

• $f_{c\ell l}^{J\pi}(R)$ are the generator functions.

The RGM and GCM frameworks are equivalent.

- $\Phi_{c\ell l}^{JM\pi}$ are linked to the $\varphi_{c\ell l}^{J\pi}$.
- The RGM $g_{c\ell l}^{J\pi}(\rho)$ functions can be expanded over Gaussian functions.

$$g_{c\ell l}^{J\pi}(\rho) = \int f_{c\ell l}^{J\pi}(R) \Gamma_{\ell}(\rho, R) dR,$$

• $\Gamma_{\ell}(\rho, R) = \left(\frac{\mu}{\pi b^2}\right)^{3/4} \exp\left[-\frac{\mu}{2b^2}(\rho^2 + R^2)\right] i_{\ell}\left(\frac{\mu\rho R}{b^2}\right)$

回 と く ヨ と く ヨ と

In practice, integrals become sums over a set of generator coordinates.

$$g_{c\ell l}^{J\pi}(
ho) pprox \sum_{n} f_{c\ell l,n}^{J\pi}(R_n) \, \Gamma_{\ell}(
ho,R_n)$$

- GCM basis functions have a Gaussian asymptotic behaviour and cannot directly describe scattering states.
- $f_{c\ell l,n}^{J\pi}(R)$ are calculated by using the MRM which corrects the wrong Gaussian behaviour of the GCM functions.

<回と < 回と < 回と -

The microscopic R-matrix method (MRM)

- The space is divided into two regions
- At the border defined by $\rho = a$

$$g_{c\ell l}^{int}(a) = g_{c\ell l}^{ext}(a)$$

• In the external region, $g_{c\ell l}^{ext}(
ho) \propto$ Coulomb Functions

물 에서 물 에

- Unified description of bound, resonant and scattering states.
- Exact treatment of antisymmetrization: the Pauli principle is exactly treated.
- Exact center of mass separation.
- The quantum numbers associated with the colliding nuclei are restored.
- Exact asymptotic behaviour of the WFs.
- Once the interaction is fixed, the results are parameter free.
- The variational GCM basis is finite.
- Effective interactions.

How to improve the Cluster WF ?

More clusters and/or more HO major shells Multicluster model and Extended Two Cluster Model (ETCM)

Tetraedral states

Binding energies (in MeV) of one-center and four-center wave functions³

	Ground-State	One center	Four centers	Difference
¹² C	0+	-76.3	-88.	\simeq -12
¹³ C	1/2-	-83.7	-91.7	\simeq -8
¹⁴ C	0+	-96.1	-103.4	\simeq -7
¹⁵ N	1/2-	-120.7	-126.8	\simeq -6
¹⁶ O	0+	-140.4	-148.8	\simeq -8

Better description as compared to a one center model.

³M.Dufour and P. Descouvemont, Nucl. Phys. A650, 160 (1996). ロト イヨト イヨト イヨト ヨー つへく

Application in Nuclear Astrophysics: the ${}^{12}C(\alpha, \gamma){}^{16}O$ *E*2 cross section

- ${}^{12}C(\alpha, \gamma){}^{16}O$: key reaction in nuclear astrophysics
 - Determines the ¹²C/¹⁶O ratio after Helium burning
 - Uncertainties associated with the reaction rate should not exceed 20%
- Its study is a very difficult task
 - Stellar energies are very low: $E_G \approx 300 \text{ keV}$
 - Charged-induced nuclear reaction take place below the Coulomb barrier → Tiny cross section
 - Experimental data are not available at astrophysical energies
 - E1 and E2 multipolarities are of equal importance
 - E1 are well understood
 - E2 are not well understood

(ロ) (部) (E) (E) (E)

Microscopic Cluster Calculation Approach:

- E2 multipolarity dominated by a 2⁺₁ subthreshold state at stellar energies well described as a ¹²C+α cluster state
- Full study in⁴

Conditions of Calculation

- ¹²C (ETCM Large Variational Basis):
- s shells filled, 4 p and 4 n in the p shells
- 225 Slater Determinants
- 23 ${}^{12}C+\alpha$ channels (I_1 from 0⁺ to 4⁺)
- EVI interaction
- Parameters chosen in order to reproduced the 2⁺₁ and 2⁺₂ energies with respect to the ¹²C + α threshold

GCM S-factor for transitions to the ground state

Comparaison with the latest experimental data:

- •Roters et al., Eur. Phys. J. A 6, 451 (1999).
- R. Kunz et al., Phys. Rev. Lett. 86, 3244 (2001).
- J. W. Hammer et al., Nucl. Phys. A758, 363c (2005).
- M. Assunçao et al., Phys. Rev. C 73, 055801 (2006).

• GCM-estimate of S-factor: $S(300 \text{ keV}) \approx 50 \text{ keV-b}$

The ${}^{12}C(\alpha, \gamma){}^{16}O$ *E*2 cross section - Summary

- Microscopic Cluster Calculations
 - Fundamental approach
 - Good description of the 2⁺₁ subthreshold state
 - Impossible to get an exact reproduction of all the necessary spectroscopic data
- Phenomenological R-Matrix Fits
- Combination of both approaches
- To constrain the fits with the 2⁺₁ ANC taken from the GCM
 - Recommended value:

 $S_{\textit{E2}}(300~\text{keV}) = 42\pm2~\text{keV-b}$

- (御) (注) (注) (注

Molecular band in the ¹²Be nucleus

• Brief Overview of Experimental Results: ¹²Be (Known Levels)

Other resonances but spin and parity only tentatively assigned Widths are not measured

Multichannel expression of the ¹²Be WFs

- ${}^{8}\text{He}(0^{+},2^{+})$ + α and ${}^{6}\text{He}(0^{+},2^{+})$ + ${}^{6}\text{He}(0^{+},2^{+})$ Channels • EVI Force
- Improvement of previous GCM investigations involving only ⁸He(0⁺) and ⁶He(0⁺) GS channels (Descouvemont and Baye in 2001).
- M. Dufour *et al.*, Nucl. Phys. **A836**, 242 (2010).

・ 回 ト ・ ヨ ト ・ ヨ ト …

GCM - Positive parity states - Molecular band

- Our calculations support the existence of a molecular band
- 0_M^+ : ($\Gamma^{GCM} = 0.365$ MeV) and clear ${}^6\text{He}(0^+)$ + ${}^6\text{He}(0^+)$ structure.
- 0_2^+ and 2_2^+ are also well reproduced by the GCM + other states.
- We propose a new band.

<回> < 回> < 回> < 回>

臣

GCM - Negative parity states

- $K = 1^{-}$ band based on the 1^{-}_{1} GCM state
- Could correspond to the tentatively assigned band of Bohlen seen in three-neutron stripping reaction on ⁹Be

→ E → < E →</p>

크

Multichannel analysis of the ¹⁶B nucleus

Overview of Experimental Results:

- ¹⁶B is unbound (Kryger *et al.*, Eur. Phys. J. A **6**, 451 (1999)).
- Investigations of the low lying structure
 - Transfer reaction: ¹⁴C (¹⁴C,¹²N) ¹⁶B (R. Kalpakchieva *et al.*, Eur. Phys. J. A **7**, 451 (2000)).
 - Single-proton removal from a 35 MeV/nucleon ¹⁷C beam (J.-L. Lecouey *et al.*, Phys. Lett. B 672, 6-11 (2009)).

Above the ¹⁵B+n threshold:

Er	Kalpakchieva	Lecouey
(1)	0.04 ± 0.04 MeV (F $\ll100$ keV)	$0.085\pm0.015~\mbox{MeV}~(\Gamma\ll100~\mbox{keV})$ $\ell=2$
(2)	2.32 ± 0.07 MeV ($\Gamma=0.15$ MeV)	

(日) (同) (E) (E) (E) (E)

Microscopic Wave Functions:

$$\Psi_{16_{B}} = \Psi_{15_{B+n}}$$

$$\Phi_c(R) = \mathcal{A} \ \Phi_{^{15}\text{B},c}(-\frac{1}{16}R) \ \Phi_n(\frac{15}{16}R)$$

- ¹⁵B: Shell Model description (1320 Slater Determinants)
 - Neutrons: *s*, *p* shells filled, 2 neutrons in the *sd* shell.
 - Protons: *s* shell filled, 3 protons in the *p* shells.
- ¹⁶B: Cluster Model (87 channels (¹⁵B + n))
 - Exact treatment of antisymmetrization.
 - Exact asymptotic behavior of the wave functions
 - Unified description of bound and resonant states.

Large Variational Basis

Results - ¹⁶B spectrum

- 0^-_1 , $\ell = 2$, $\Gamma = 1.26 \times 10^{-2}$ keV, consistent with Exp
- 0^-_1 , $\ell = 2$, in agreement with SM calculations (Warburton *et al.* PRC **46** 923 (1992)).
- New: $(1^-, \ell = 0)$ resonance at the threshold (possible GS ?)

- Unified description of bound, resonant and scattering states.
- Exact treatment of antisymmetrization: the Pauli principle is exactly treated.
- Exact asymptotic behaviour of the WFs.
- Large field of applications.
- Nuclear Astrophysics
- Light nuclei

M. Dufour Microscopic Cluster Model

イロン イヨン イヨン イヨン

2

Microscopic Hamiltonian:

$$\mathcal{H} = \sum_{i}^{16} T_{i} + \sum_{i < j=1}^{16} \left(V_{ij}^{NN} + V_{ij}^{SO} + V_{ij}^{Coul} \right)$$

- V^{NN}_{ij} = V^{Volkov}, (one free parameter: *M*)
 V^{SO}_{ii}, (one free parameter: S₀)
- The GCM 0_1^- is the lowest $\ell = 2$ state.
- S_0 is fixed to a typical value: $S_0 = 35 \text{ MeV.fm}^5$.
- *M* is tuned in order to fit the GCM 0_1^- energy at ≈ 85 keV, (*M* = 0.6935).
- All the results are obtained with this interaction

・ 回 ト ・ ヨ ト ・ ヨ ト

Results - ¹⁶B eigenphase shift

The ¹⁶B resonance analysis is performed in terms of eigenphase shift.

- 0_1^- : narrow resonance at $\approx 85 \text{ keV}$
- 1₁⁻: resonance near the threshold
- 1_2^- : broad resonance at ≈ 0.6 MeV

(本語) (本語) (二)

æ

- Several resonances are obtained at low energy with the GCM.
- $\ell = 2$ resonance of Lecouey *et al.* assigned to 0⁻ in agreement with the SM.
- 0^-_1 cannot be described by the ${}^{15}B(3/2-)$ + n channel.
- New: $(1^-, \ell = 0)$ state at the threshold could be the Ground-State.
- GCM: more adapted to describe resonances
 - Exact description of the asymptotic behavior of the wave functions
 - Phase shift analysis
 - Possibility to compute widths
- New experiments are needed to clarify the ¹⁶B spectrum.

(日) (同) (E) (E) (E) (E)

Multicluster Model

- ¹⁶O(α, γ)²⁰Ne
- ${}^{15}\text{O}(\alpha,\gamma){}^{19}\text{Ne}, {}^{15}\text{N}(\alpha,\gamma){}^{19}\text{F}$
- ${}^{13}C(\alpha, n){}^{16}O, {}^{16}O(n, \gamma){}^{17}O$
- ${}^{12}C(n,\gamma){}^{13}C$, ${}^{12}C(p,\gamma){}^{13}N$

We always get better results as compared to a simpler two cluster approach.

(四) (王) (王)

크

- Microscopic Cluster Calculations:
 - Good description of the 2⁺₁ subthreshold state
 - The Asymptotic Normalization Constant (ANC) of the 2⁺₁ can be calculated with the GCM
 - The ANC C^{Jπ}_{γℓ} represents the amplitude of a bound-state wave function at large distances

$$g^{J\pi}_{\gamma\ell}(
ho) \longrightarrow C^{J\pi}_{\gamma\ell} W_{-\eta_B,\ell+1/2}(2k_B
ho),$$

where W is the Whittaker function, η_B and k_B are the Sommerfeld parameter and wave number of the bound state

- The ANC of the 2^+_1 is linked to its reduced width γ_1
- To constrain the fits with the 2^+_1 ANC taken from the GCM

(ロ) (部) (E) (E) (E)

• Shell Model:

- The structure of the Ground State and of the low-lying states is linked to the understanding of the breakdown of the N = 8 shell closure.
 - As early as in 1976, Barker pointed out the necessity to introduce non p—shell configurations in the wave function of the ground state in order to explain its β-decay half life.
 - Since, this point has been confirmed by several experiments and theoretical works (see e.g. Navin *et al.* PRL 2000 or Pain *et al.* PRL 2006)

Microscopic Cluster Models:

- Good description of cluster states such as molecular ones
- Kanada-Enyo et al. 2003 (Antisymmetrized Molecular Dynamic), Ito et al. 2008 (molecular-like model)
- Descouvement and Baye (Phys. Lett B 505 2001) (Generator Coordinate Method).

◆□▶ ◆□▶ ◆三▶ ◆三▶ ◆□ ◆ ○ ◆

- Shell model consideration from ¹⁷C.
- Single proton removal should leave the neutron configuration of the projectile unperturbed.
- The low-lying states in ¹⁶B should therefore correspond to a $\pi p3/2$ hole coupled to the ¹⁷C ground state neutron configuration.
- ¹⁶B ground state neutron configuration (Warburton).

 $\pi(\boldsymbol{p}_{3/2})^{-1} \otimes \nu(\boldsymbol{d}_{5/2})^3_{J=3/2+} + \pi(\boldsymbol{p}_{3/2})^{-1} \otimes \nu(\boldsymbol{d}_{5/2}^2, \boldsymbol{s}_{1/2})_{J=3/2+}$

• configuration which decays by d-wave neutron emission.

J^{π}	Г (MeV)	$(c, \ell, I) \theta_{c\ell I}^2$ here c refer to the ¹⁵ B channel
0_1	1.3 ×10 ⁻⁵	$(5/2-,2,2)$ $3.37 imes 10^{-2}$ $(3/2-,2,2)$ $1.34 imes 10^{-3}$
0^{-}_{2}	1.5	$(1/2-,0,0)$ $4.70 imes 10^{-1}$
1 ⁻		$(3/2-,0,1)$ $3.26 imes 10^{-1}$
1^{-}_{2}	3.0 ×10 ⁻¹	(3/2-,0,1) 1.20 $ imes$ 10 ⁻¹
2 ⁻	7.5 ×10 ⁻¹	$(3/2-,0,1)$ $4.92 imes 10^{-1}$
2^{-}_{2}	2.1 ×10 ⁻¹	(5/2-,0,2) 2.87 $ imes$ 10 ⁻¹
3 ⁻	1.4 ×10 ⁻¹	(5/2-,0,3) 9.79 $ imes$ 10 ⁻² $(3/2-,2,2)$ 7.60 $ imes$ 10 ⁻³
3^{-}_{2}	7.8 ×10 ⁻¹	$(5/2-,0,3)~3.67 imes 10^{-1}$
4 ⁻	1.2	$(7/2-,0,4)~5.10 imes10^{-1}$ $(3/2-,2,2)~2.00 imes10^{-2}$
4^{-}_{2}	8.7 ×10 ⁻¹	(3/2-,2,1) 1.67 $ imes$ 10 ⁻¹

・ロト・日本・日本・日本・日本・日本