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Overview of the Theoretical Framework

(1) + (2) −→ (1, 2) −→ ...

(2)

A = A1 + A2

(1)

We approximatively solve the Schrödinger equation of a A−nucleon system
with the Generator Coordinate Method combined with the Microscopic
R-Matrix Method to determine:

Cross Sections (Elastic, Radiative Capture, Transfer reaction, etc)
Physical properties of the unified (1, 2) nucleus (Spectrocopy, etc)

M. Dufour Microscopic Cluster Model



Microscopic Hamiltonian

H =

A
∑

i

Ti +

A
∑

i<j=1

(

V NN
ij + V SO

ij + V Coul
ij

)

Central part: combination of Ng Gaussian form factors

V NN
ij (r) =

Ng
∑

k=1

V0k exp(−(r/ak )2) (wk−mkPσ
ij Pτ

ij +bkPσ
ij −hkPτ

ij ).

Volkov, Minnesota forces - One free parameter
Extended Volkov Interaction - Two free parameters2

V SO
ij , Spin-Orbit force - One free parameter

V Coul
ij , Coulomb force - Exactly treated

2M.Dufour and P. Descouvemont, Nucl. Phys. A726, 53 (2003).

M. Dufour Microscopic Cluster Model



Two Cluster Model Basis State

R

(1,2) JM,Π

(2) I2 Π2(1) I1 Π1

l

A Cluster is an Harmonic Oscillator Potential.
All quantum numbers are exactly treated.
R: Generator Coordinate
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Resonating Groupe Method (RGM) Wave Function

In partial (JM, π) vawe, the total WF can be written as:

ΨJMπ =
∑

cℓI

ΨJMπ
cℓI =

∑

cℓI

A gJπ
cℓI(ρ) ϕJπ

cℓI

A is the A-nucleon antisymmetrizor.

c labels the various channels - ( J = I + ℓ, I = I1 + I2 )

gJπ
cℓI(ρ) are the radial functions.

ϕJπ
cℓI =

[

[φI1
c ⊗ φI2

c ]I ⊗ Yℓ(Ωρ)
]JM

, are the channel WFs.

• φI1
c and φI2

c are the internal WFs of (1) and (2), defined from
Slater Determinants involving the two clusters.
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Generator Coordinate Method (GCM) WF

In partial (JM, π) vawe, the total WF can be written as:

ΨJMπ =
∑

cℓI

ΨJMπ
cℓI =

∑

cℓI

∫

f Jπ
cℓI (R) ΦJMπ

cℓI dR,

R is the generator coordinate.

f Jπ
cℓI (R) are the generator functions.

The RGM and GCM frameworks are equivalent.

ΦJMπ
cℓI are linked to the ϕJπ

cℓI .

The RGM gJπ
cℓI(ρ) functions can be expanded over

Gaussian functions.

gJπ
cℓI(ρ) =

∫

f Jπ
cℓI (R) Γℓ(ρ, R) dR,

Γℓ(ρ, R) =

(

µ
πb2

)3/4

exp
[

−
µ

2b2 (ρ2 + R2)
]

iℓ
(

µρR
b2

)
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GCM - Microscopic R−Matrix Method (MRM)

In practice, integrals become sums over a set of generator
coordinates.

gJπ
cℓI(ρ) ≈

∑

n

f Jπ
cℓI,n(Rn) Γℓ(ρ, Rn)

GCM basis functions have a Gaussian asymptotic
behaviour and cannot directly describe scattering states.

f Jπ
cℓI,n(R) are calculated by using the MRM which corrects
the wrong Gaussian behaviour of the GCM functions.
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The microscopic R-matrix method (MRM)

Internal Region

External Region

GCM

RGM

Coulomb Functions

ρ = a = Channel Radius

ρ

The space is divided into two regions

At the border defined by ρ = a

g int
cℓI(a) = gext

cℓI (a)

In the external region, gext
cℓI (ρ) ∝ Coulomb Functions
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Theoretical Framework - Summary

Unified description of bound, resonant and scattering
states.
Exact treatment of antisymmetrization: the Pauli principle
is exactly treated.
Exact center of mass separation.
The quantum numbers associated with the colliding nuclei
are restored.
Exact asymptotic behaviour of the WFs.
Once the interaction is fixed, the results are parameter
free.

The variational GCM basis is finite.
Effective interactions.
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How to improve the Cluster WF ?

S

S

S

S

S

R

RRc
h

2

1

1

3

4

2

5

R

(1,2) JM,Π

(2) I2 Π2(1) I1 Π1

l

More clusters and/or more HO major shells
Multicluster model and Extended Two Cluster Model (ETCM)
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Tetraedral states

S

(1)

��
��
��
��

α
α

α

Binding energies (in MeV) of one-center and four-center wave functions3

Ground-State One center Four centers Difference
12C 0+ -76.3 -88. ≃ -12
13C 1/2− -83.7 -91.7 ≃ -8
14C 0+ -96.1 -103.4 ≃ -7
15N 1/2− -120.7 -126.8 ≃ -6
16O 0+ -140.4 -148.8 ≃ -8

Better description as compared to a one center model.
3M.Dufour and P. Descouvemont, Nucl. Phys. A650, 160 (1996).
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Application in Nuclear Astrophysics:
the 12C(α, γ)16O E2 cross section

12C(α, γ)16O: key reaction in nuclear astrophysics
Determines the 12C/16O ratio after Helium burning
Uncertainties associated with the reaction rate should not
exceed 20%

Its study is a very difficult task
Stellar energies are very low: EG ≈ 300 keV
Charged-induced nuclear reaction take place below the
Coulomb barrier → Tiny cross section
Experimental data are not available at astrophysical
energies
E1 and E2 multipolarities are of equal importance
E1 are well understood
E2 are not well understood
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Microscopic Cluster Calculation Approach:

12C + α

16O

2+
1 (-0.245 MeV) - Cluster State

2+
2 (2.68 MeV, Γα = 0.625 keV)

0+
1 (GS)

0+
2 (-1.11 MeV)

1-
1 (-0.045 MeV)

E2 multipolarity dominated by a 2+

1 subthreshold state at
stellar energies well described as a 12C+α cluster state

Full study in4

4M. Dufour and P. Descouvemont, Phys. Rev. C 78 (2008) 015808
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Conditions of Calculation

π π

π

1 2 21

l

I I

O
C

He

J

R

s
p

s
sd

12

4

16

12C - (ETCM - Large Variational Basis):

s shells filled, 4 p and 4 n in the p shells

225 Slater Determinants

23 - 12C+α channels (I1 from 0+ to 4+)

EVI interaction

Parameters chosen in order to reproduced the 2+

1 and 2+

2
energies with respect to the 12C + α threshold
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GCM S-factor for transitions to the ground state

0 1 2 3 4

Ec.m. (MeV)

S
E

2 
(k

eV
-b

)

10-1

101

102

100

10-2

103 ��+

• Comparaison with the latest experimental data:
•Roters et al., Eur. Phys. J. A 6, 451 (1999).
• R. Kunz et al., Phys. Rev. Lett. 86, 3244 (2001).
• J. W. Hammer et al., Nucl. Phys. A758, 363c (2005).
• M. Assunçao et al., Phys. Rev. C 73, 055801 (2006).

• GCM-estimate of S-factor: S(300 keV) ≈ 50 keV-b
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The 12C(α, γ)16O E2 cross section - Summary

Microscopic Cluster Calculations
Fundamental approach
Good description of the 2+

1 subthreshold state
Impossible to get an exact reproduction of all the necessary
spectroscopic data

Phenomenological R-Matrix Fits

Combination of both approaches
To constrain the fits with the 2+

1 ANC taken from the GCM
Recommended value:

SE2(300 keV) = 42 ± 2 keV-b

M. Dufour Microscopic Cluster Model



Molecular band in the 12Be nucleus

• Brief Overview of Experimental Results:

2+ 
4+ 

6+ 

13.2 MeV

11.3 MeV

16.1 MeV

19.3 MeV

(Saito et al. 2004)

2+ 
0+ 

0+ 

1− 
2+ 
(3− , 4+)

2.10 MeV

10.9 MeV

Molecular band

Isomeric

5.70 MeV

Be + n (3.17 MeV)
(Shimoura et al. 2003)

(Freer et al. 1999, 2003 )

Be + 2n (3.67 MeV)11

11

(Fortune et al. 1994)

(Iwasaki et al. 2000)

He +   He (10.1 MeV)

He +   He (8.95 MeV)

6 6 

48 

4.56 MeV

(Known Levels)Be12

2.68 MeV

Other resonances but spin and parity only tentatively assigned
Widths are not measured

0+ GS

(Charity et al. 2007, No confirmation)
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Multichannel expression of the 12Be WFs

He (0 , 2  ) He

R

He (0 , 2  ) He (0 , 2  )

+ +

p
p

s
s

+
++ + + +66

8 4

New : 2   excited states+

8He(0+, 2+)+ α and 6He(0+, 2+)+ 6He(0+, 2+) Channels
EVI Force

Improvement of previous GCM investigations involving only 8He(0+)

and 6He(0+) GS channels (Descouvemont and Baye in 2001).
M. Dufour et al., Nucl. Phys. A836, 242 (2010).
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GCM - Positive parity states - Molecular band

-8

-3

2

7

12

0 10 20 30 40 50

J(J+1)

E
4-

8 
(M

eV
) Molecular Band

0+ Isomeric Band

New Band

• Our calculations support the existence of a molecular band
• 0+

M : (ΓGCM = 0.365 MeV) and clear 6He(0+)+ 6He(0+) structure.
• 0+

2 and 2+

2 are also well reproduced by the GCM + other states.
• We propose a new band.
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GCM - Negative parity states

-4

-2

0

2

4

6

8

0 20 40

J(J+1)

E
4-

8 
(M

eV
)

New band

GCM

Bohlen 08 

(5-)

(4-)

(3-)

(2-)
(1-)

• K = 1− band based on the 1−

1 GCM state

• Could correspond to the tentatively assigned band of Bohlen seen in

three-neutron stripping reaction on 9Be
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Multichannel analysis of the 16B nucleus

Overview of Experimental Results:
16B is unbound (Kryger et al., Eur. Phys. J. A 6, 451 (1999)).

Investigations of the low lying structure

Transfer reaction: 14C (14C,12N) 16B
(R. Kalpakchieva et al., Eur. Phys. J. A 7, 451 (2000)).
Single-proton removal from a 35 MeV/nucleon 17C beam
(J.-L. Lecouey et al., Phys. Lett. B 672, 6-11 (2009)).

Above the 15B+n threshold:

Er Kalpakchieva Lecouey

(1) 0.04 ± 0.04 MeV (Γ ≪ 100 keV) 0.085 ± 0.015 MeV (Γ ≪ 100 keV)
ℓ = 2

(2) 2.32 ± 0.07 MeV (Γ = 0.15 MeV)

M. Dufour Microscopic Cluster Model



Microscopic Wave Functions:

nB

B + nB

R

15

Ψ       =    Ψ 1516

sd

s
p

Φc(R) = A Φ15B,c(−
1

16R) Φn(
15
16R)

• 15B: Shell Model description (1320 Slater Determinants)
Neutrons: s, p shells filled, 2 neutrons in the sd shell.
Protons: s shell filled, 3 protons in the p shells.

• 16B: Cluster Model (87 channels (15B + n) )
Exact treatment of antisymmetrization.
Exact asymptotic behavior of the wave functions
Unified description of bound and resonant states.

Large Variational Basis
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Results - 16B spectrum

0-
1-

1-
2-

2-
3-

3-

4-

0

1

2

3

0-

3-
2-
4-
2-
1-

1-
3-

GCM SM

15B+n

Exp

l = 2

Several resonances are obtained at low energy with the GCM
0−

1 , ℓ = 2, Γ = 1.26 × 10−2 keV, consistent with Exp
0−

1 , ℓ = 2, in agreement with SM calculations
(Warburton et al. PRC 46 923 (1992)).
New: (1−, ℓ = 0) resonance at the threshold (possible GS ?)

M. Dufour Microscopic Cluster Model



Summary

Unified description of bound, resonant and scattering states.
Exact treatment of antisymmetrization: the Pauli principle is
exactly treated.
Exact asymptotic behaviour of the WFs.

Large field of applications.
Nuclear Astrophysics
Light nuclei
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Microscopic Hamiltonian:

H =

16
∑

i

Ti +

16
∑

i<j=1

(

V NN
ij + V SO

ij + V Coul
ij

)

V NN
ij = V Volkov

ij , (one free parameter: M)

V SO
ij , (one free parameter: S0)

The GCM 0−

1 is the lowest ℓ = 2 state.

S0 is fixed to a typical value: S0 = 35 MeV.fm5.

M is tuned in order to fit the GCM 0−

1 energy at ≈ 85 keV,
(M = 0.6935).

All the results are obtained with this interaction
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Results - 16B eigenphase shift

The 16B resonance analysis is performed in terms of
eigenphase shift.

-110

-60

-10

40

90

140

190

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5

0-

1-
1-

0−

1 : narrow resonance at ≈ 85 keV

1−

1 : resonance near the threshold

1−

2 : broad resonance at ≈ 0.6 MeV
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16B spectrum - Summary

Several resonances are obtained at low energy with the GCM.
ℓ = 2 resonance of Lecouey et al. assigned to 0− in agreement
with the SM.
0−

1 cannot be described by the 15B(3/2−) + n channel.

New: (1−, ℓ = 0) state at the threshold could be the
Ground-State.

GCM: more adapted to describe resonances
Exact description of the asymptotic behavior of the wave
functions
Phase shift analysis
Possibility to compute widths

New experiments are needed to clarify the 16B spectrum.
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Multicluster Model

S

S

S

S

S

R

RRc
h

2

1

1

3

4

2

5

16O(α, γ)20Ne
15O(α, γ)19Ne, 15N(α, γ)19F
13C(α, n)16O, 16O(n, γ)17O
12C(n, γ)13C, 12C(p, γ)13N

We always get better results as compared to a simpler two
cluster approach.
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Combination GCM - R-Matrix Fits

Microscopic Cluster Calculations:
Good description of the 2+

1 subthreshold state
The Asymptotic Normalization Constant (ANC) of the 2+

1
can be calculated with the GCM
The ANC CJπ

γℓ represents the amplitude of a bound-state
wave function at large distances

gJπ
γℓ (ρ) −→ CJπ

γℓ W
−ηB ,ℓ+1/2(2kBρ),

where W is the Whittaker function, ηB and kB are the Sommerfeld parameter and

wave number of the bound state

The ANC of the 2+

1 is linked to its reduced width γ1

To constrain the fits with the 2+

1 ANC taken from the GCM

M. Dufour Microscopic Cluster Model



Challenge for Theoretical Calculations

Shell Model:

The structure of the Ground State and of the low-lying
states is linked to the understanding of the breakdown of
the N = 8 shell closure.

As early as in 1976, Barker pointed out the necessity to introduce non
p−shell configurations in the wave function of the ground state in order to
explain its β-decay half life.

Since, this point has been confirmed by several experiments and

theoretical works (see e.g. Navin et al. PRL 2000 or Pain et al. PRL 2006)

Microscopic Cluster Models:
Good description of cluster states such as molecular ones
Kanada-Enyo et al. 2003 (Antisymmetrized Molecular Dynamic), Ito et al. 2008
(molecular-like model)

Descouvemont and Baye (Phys. Lett B 505 2001) (Generator Coordinate

Method).
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0−

1 Shell Model Structure

Shell model consideration from 17C.

Single proton removal should leave the neutron
configuration of the projectile unperturbed.

The low-lying states in 16B should therefore correspond to
a πp3/2 hole coupled to the 17C ground state neutron
configuration.
16B ground state neutron configuration (Warburton).

π(p3/2)
−1

⊗ ν(d5/2)
3
J=3/2+

+ π(p3/2)
−1

⊗ ν(d2
5/2, s1/2)J=3/2+

configuration which decays by d−wave neutron emission.

M. Dufour Microscopic Cluster Model



16B Width

Jπ Γ (MeV) (c, ℓ, I) θ2
cℓI here c refer to the 15B channel

0−

1 1.3 ×10−5 (5/2−, 2, 2) 3.37 × 10−2 (3/2−, 2, 2) 1.34 × 10−3

0−

2 1.5 (1/2−, 0, 0) 4.70 × 10−1

1−

1 (3/2−, 0, 1) 3.26 × 10−1

1−

2 3.0 ×10−1 (3/2−, 0, 1) 1.20 × 10−1

2−

1 7.5 ×10−1 (3/2−, 0, 1) 4.92 × 10−1

2−

2 2.1 ×10−1 (5/2−, 0, 2) 2.87 × 10−1

3−

1 1.4 ×10−1 (5/2−, 0, 3) 9.79 × 10−2 (3/2−, 2, 2) 7.60 × 10−3

3−

2 7.8 ×10−1 (5/2−, 0, 3) 3.67 × 10−1

4−

1 1.2 (7/2−, 0, 4) 5.10 × 10−1 (3/2−, 2, 2) 2.00 × 10−2

4−

2 8.7 ×10−1 (3/2−, 2, 1) 1.67 × 10−1
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