GROUND-STATE PROPERTIES OF DEFORMED ODD-MASS NUCLEI WITHIN THE HIGHER TAMM–DANCOFF APPROXIMATION

L. Bonneau¹⁾, J. Le Bloas¹⁾, P. Quentin¹⁾, N. Minkov^{1,2)} ¹⁾CENBG–University of Bordeaux (France) ²⁾INRNE Sofia (Bulgaria)

XVII Nuclear Physics Workshop, Kazimierz-Dolny (Poland)

22-26 September, 2010

†Deceased

INTRODUCTION

MOTIVATIONS

- Aim: spectroscopy of odd-mass deformed nuclei, including *K*-isomers states and isospin properties
- Unified Model for axially deformed odd nuclei
 - collective degrees of freedom (d.o.f.) coupled to intrinsic d.o.f. in a way preserving the discrete symmetries of intrinsic deformation
 - for odd nuclei with good K

$$\Psi_{\it IMK} \propto ({\sf 1} + {\cal R}_y) {\it D}_{\it M,K}^{\it I} \phi_K \, ,$$

 $\mathcal{R}_{y} = y$ -signature operator (symmetry axis = z axis) $D_{M,K}^{I} =$ Wigner rotation matrix $\phi_{K} =$ intrinsic state, e.g., in the Higher Tamm-Dancoff Approximation (highly truncated shell model based on the Hartree–Fock solution)

INTRODUCTION

OUTLINE

Theoretical framework:

- Hartree-Fock approximation for axially deformed odd nuclei (time-reversal symmetry broken)
- Inclusion of T = 0 and T = 1 pairing correlations within HTDA (particle number conserved)
- Results around ²⁴Mg and ⁴⁸Cr:
 - Effect of time-reversal symmetry breaking on s.p. spectra
 - Effects of core polarization and pairing correlations on some GS properties:
 - magnetic moment
 - isospin mixing
 - isovector odd-even binding-energy difference

HARTREE-FOCK APPROACH TO ODD NUCLEI

Description of the even-even (N, Z) core

Hartree-Fock calculation for even-even nuclei:

- Skyrme effective interaction (SIII, SLy4)
- axial and intrinsic parity symmetries assumed
- $\Rightarrow HF \text{ solution } |\Phi_0\rangle$

Description of (N + 1, Z) and (N, Z + 1) nuclei

- Choose the lowest-energy K^π s.p. state unoccupied in |Φ₀⟩
 ⇒ rank *n* among K^π states by increasing energy
- Solve the HF equations for the odd nucleus with occupation set to 1 for the K^π s.p. state of rank n ⇒ HF solution |Φ_{K^π}⟩ (no pairing), Kramers degeneracy of s.p. spectrum suppressed

HF S.P. SPECTRA

17 NPW, September 2010

5/20

HTDA APPROACH TO ODD NUCLEI

BRIEF DESCRIPTION

Highly truncated shell model on a Hartree-Fock solution:

- HF solution $|\Phi_{K^{\pi}}\rangle$ with blocked K^{π} s.p. state
- many-body basis: *n*-particle–*n*-hole excitations on $|\Phi_{K^{\pi}}\rangle$ (type depending on correlations to be described)
- diagonalization of HTDA hamiltonian in the many-body basis

 \Rightarrow correlated ground state $|\Psi_{K^{\pi}}\rangle$

HTDA APPROACH TO ODD NUCLEI

MANY-BODY BASIS

HTDA ground state $|\Psi\rangle$ expanded on 2p-2h "quasi-paired" excitations ($T_z = -1$, 0 and 1) created on $|\Phi_{K^{\pi}}\rangle$:

$$ert \Psi
angle = \chi_0 ert \Phi_{K^{\pi}}
angle + \sum_i \chi_i ert \Phi_i
angle$$

 $ert \Phi_i
angle = a^{\dagger}_{eta} a^{\dagger}_{\widetilde{eta}} a_{\widetilde{b}} a_{b} ert \Phi_{K^{\pi}}
angle ,$

with $|\tilde{b}\rangle$ such that

$$egin{aligned} \hat{H}_{ ext{HF}} | \widetilde{b}
angle &= e_{\widetilde{b}} | \widetilde{b}
angle \left(e_{\widetilde{b}}
eq e_{b}
ight) \ \hat{J}_{z} | \widetilde{b}
angle &= -\kappa_{b} \hbar | \widetilde{b}
angle \ \langle \overline{b} | \widetilde{b}
angle & ext{maximum (close to 1).} \end{aligned}$$

HTDA APPROACH TO ODD NUCLEI

HTDA HAMILTONIAN

• Given a 2-body density-dependent interaction \hat{V} :

$$\hat{H} = \hat{K} + \hat{V}$$

= $\underbrace{\hat{K} + \hat{V}_{\mathrm{HF}} - \langle \Phi_{K^{\pi}} | \hat{V} | \Phi_{K^{\pi}} \rangle + E_{R}}_{\hat{H}_{0}} + \underbrace{\hat{V} - \hat{V}_{\mathrm{HF}} + \langle \Phi_{K^{\pi}} | \hat{V} | \Phi_{K^{\pi}} \rangle - E_{R}}_{\hat{V}_{\mathrm{res}}}$

 $(E_R = rearrangement energy)$

• Approximation for the nuclear part: $\hat{V} \approx \delta$ interaction in \hat{V}_{res} (T = 0 and T = 1 pairing)

MAGNETIC MOMENTS IN THE UNIFIED MODEL

with $g_{K} = \langle \Phi_{K} | \hat{\mu}_{z} | \Phi_{K} \rangle / K$, $| \Phi_{K} \rangle$ intrinsic state

INTRINSIC CONTRIBUTION

• Single-particle model:

$$\mu_{\text{intr}} \approx \mu_{\text{odd}} = \frac{\kappa}{l+1} \left(\boldsymbol{g}_{\ell} \langle \hat{\ell}_{z} \rangle_{\text{odd}} + \boldsymbol{g}_{s} \boldsymbol{s}_{\text{odd}} \right) \mu_{\boldsymbol{N}}$$

• HF: g_s renormalized by core polarization

$$g_s^{(\mathrm{eff})} = g_s^{(q)} + \sum_{q'=n,p} \left(1 - rac{g_\ell^{(q')}}{g_s^{(q')}}
ight) rac{g_s^{(q')} \langle \Phi_K | \hat{\mathbf{s}}_Z | \Phi_K
angle_{\mathrm{core}}^{(q')}}{s_{\mathrm{odd}}} \,,$$

SPIN QUENCHING OF MAGNETIC MOMENTS

Nucleus	$(J^{\pi})_{\exp}$	$(K^{\pi})_{ m th}$	S odd	Spin quenching factor
⁴⁹ Cr	5/2-	5/2-	0.429	0.742
⁴⁹ Mn	5/2-	5/2-	0.429	0.843
⁹⁹ Sr	3/2+	3/2+	0.333	0.842
⁹⁹ Y	5/2+	5/2+	0.432	0.840
¹⁰³ Mo	3/2+	3/2+	0.355	0.763
¹⁰³ Tc	5/2+	3/2-	0.486	0.803
¹⁷⁵ Yb	7/2-	7/2-	-0.421	0.693
¹⁷⁵ Lu	7/2+	7/2+	-0.479	0.794
¹⁷⁹ Hf	9/2+	9/2+	0.437	0.700
¹⁷⁹ Ta	7/2+	9/2-	0.479	0.821
²³⁵ U	7/2-	7/2-	0.364	0.717
²³⁵ Np	5/2+	5/2-	-0.386	0.823
On average $\frac{g_s^{\text{(eff)}}}{a_c} = 1 - \eta \approx 0.78$ (close to empirical value ~ 0.7)				

10/20

INTRINSIC CONTRIBUTION

• HTDA: $\mu_{intr} = \mu_{HF} + \mu_{corr}$ with

$$\mu_{\rm corr} = \sum_{i \neq 0} \chi_i^2 \left(\langle \beta_i | \hat{\mu}_z | \beta_i \rangle + \langle \widetilde{\beta}_i | \hat{\mu}_z | \widetilde{\beta}_i \rangle - \langle \boldsymbol{b}_i | \hat{\mu}_z | \boldsymbol{b}_i \rangle - \langle \widetilde{\boldsymbol{b}}_i | \hat{\mu}_z | \widetilde{\boldsymbol{b}}_i \rangle \right)$$

given that

$$egin{aligned} |\Psi
angle &= \chi_0 |\Phi_{K^\pi}
angle + \sum_i \chi_i |\Phi_i
angle \ |\Phi_i
angle &= a^\dagger_{eta_i} a^\dagger_{eta_i} a_{eta_i} a_{b_i} |\Phi_{K^\pi}
angle \,, \end{aligned}$$

11/20

HTDA CALCULATIONS

VALENCE SPACE

- Around ²⁴Mg: [*e_F*-17.5 MeV ; *e_F*+10 MeV]
 - 5 hole levels: $(1/2^{-})_1$, $(3/2^{-})_1$, $(1/2^{-})_2$, $(1/2^{+})_2$, $(3/2^{+})_2$
 - 6 particle levels: $(5/2^+)_1$, $(1/2^+)_3$, $(1/2^+)_4$, $(1/2^-)_3$, $(3/2^-)_2$, $(3/2^+)_2$
- Around ⁴⁸Cr: [*e_F*-13.5 MeV ; *e_F*+10 MeV]
 - 8 hole levels: $(1/2^+)_2$, $(3/2^+)_2$, $(5/2^+)_1$, $(1/2^+)_3$, $(1/2^+)_4$, $(3/2^+)_2$, $(1/2^-)_4$, $(3/2^-)_3$
 - 8 particle levels: $(5/2^{-})_1$, $(7/2^{-})_1$, $(1/2^{-})_5$, $(1/2^{-})_6$, $(3/2^{-})_4$, $(1/2^{+})_5$, $(3/2^{-})_5$, $(3/2^{+})_3$

RESIDUAL INTERACTION STRENGTH

T = 1 channel: $V_0^{(T=1)} = -300 \text{ MeV.fm}^3$ (justified a posteriori) T = 0 channel: $V_0^{(T=0)} = x \cdot V_0^{(T=1)}$

INTRINSIC CONTRIBUTION

With x = 0 (no T = 0 pairing)

Nucleus	23 Na($K^{\pi} = \frac{3}{2}^{+}$)	$^{23}Mg(\frac{3}{2}^+)$	$^{25}Mg(\frac{5}{2}^+)$	$^{25}Al(\frac{5}{2}^+)$
$\langle \hat{\mu}_z \rangle_{\mathrm{HF}}^{(n)}$	-0.0947	-1.4718	-1.7350	-0.1196
$\langle \hat{\mu}_z \rangle_{ m HTDA}^{(n)}$	-0.1179	-1.4495	-1.7009	-0.1497
$\langle \hat{\mu}_z \rangle_{ m HF}^{(p)}$	3.2634	0.1137	0.1472	4.5817
$\langle \hat{\mu}_z \rangle_{ m HTDA}^{(p)}$	3.2175	0.1609	0.2191	4.5103
$\frac{K}{K+1}\langle\hat{\mu}_z angle_{\mathrm{HF}}$		-0.815		
$\frac{\kappa}{\kappa+1}\langle\hat{\mu}_z\rangle_{\mathrm{HTDA}}$		-0.709		
$\mu_{ m exp}$		(-)0.5364(3) ^a		

^a Kukuda et al., Hyperfine Interactions 78 (1993)

^b A. Bohr and B. Mottelson (1975)

 \Rightarrow Correlations increase the \bar{q} core contribution and decrease the contribution from the q states in absolute value

With x = 1.2 (Satula et al., PLB 393, 1997, with BCS+LN): $\mu_{\text{HTDA}} = -0.57$

13/20

ISOSPIN MIXING

²⁴MG: IMPACT OF COULOMB TREATMENT AND PAIRING With x = 0

$\alpha^{2} \approx \frac{\langle \mathbf{T}^{2} \rangle - \mathcal{T}_{z} (\mathcal{T}_{z} +1)}{2(\mathcal{T}_{z} +1)} (\%)$	exact	Slater
HF	0.174	0.177
$HTDA(\hat{\textit{V}}_{\mathrm{res}}(\mathrm{Coul}) \neq 0)$	0.213	0.199
$HTDA(\hat{V}_{\mathrm{res}}(\mathrm{Coul})=0)$	0.206	0.193

With *x* = 1.25:

$$\alpha^{2}(\text{Slater}, \hat{V}_{\text{res}}(\text{Coul}) = 0) = 0.23\%$$

14/20

ISOSPIN MIXING

SPURIOUS MIXING CORRECTION

With x = 0

$\alpha^2(\%)$	²³ Mg	²³ Na	²⁵ Mg	²⁵ Al
HF(Slater)	0.609	0.597	0.515	0.558
$HTDA(\hat{V}_{\mathrm{res}}(\mathrm{Coul})=0)$	0.664	0.629	0.578	0.675
e = 0 (no Coulomb):				
HF	0.503	0.503	0.425	0.425
HTDA	0.554	0.554	0.500	0.500

Approximate correction for spurious mixing: subtract $\alpha^2 (e = 0)$

ISOSPIN MIXING

²³MG: EFFECT OF CORE POLARIZATION

HF(Slater) and HTDA with $V_{res}(Coul) = 0$

α ² (%)	polarization+correction	Koopmans
<i>x</i> = 0	0.13	0.11
<i>x</i> = 1.25	0.21	0.17

 \Rightarrow Koopmans approximation seems to slightly underestimate α^2

GS PROPERTIES WITHIN HTDA

ISOVECTOR ODD-EVEN BINDING-ENERGY DIFFERENCE

Definition: $\delta \equiv \Delta_n^{(3)}(N, Z) - \Delta_p^{(3)}(N, Z)$, with the 3-point odd-even binding-energy difference

$$\Delta_n^{(3)}(N,Z) = \frac{(-1)^N}{2} \left[E(N+1,Z) + E(N-1,Z) - 2E(N,Z) \right].$$

Within HTDA:

$$E(N,Z) = \langle \Phi_0(N,Z) | \hat{H} | \Phi_0(N,Z) \rangle + \underbrace{\langle \Psi(N,Z) | \hat{H}_0 + \hat{V}_{res} | \Psi(N,Z) \rangle}_{E_{corr}},$$
so $\Delta_n^{(3)}(N,Z) = \Delta_n^{(3)}(HF) + \Delta_n^{(3)}(corr)$ and $\delta(HTDA) = \delta(HF) + \delta(corr).$
Koopmans approximation: $\Delta_n^{(3)}(HF) \approx \frac{(-1)^N}{2}(e_\nu - e_n),$ hence:
 $\delta \approx \frac{(-1)^N}{2} [\underbrace{(e_\nu - e_n) - (e_\pi - e_p)}_{\Delta e_{IV}}] + \Delta_n^{(3)}(corr) - \Delta_p^{(3)}(corr).$
 $\delta(Koopmans, N = Z) \approx \Delta_n^{(3)}(corr) - \Delta_p^{(3)}(corr)$ (isospin symmetry weakly broken).

GS PROPERTIES WITHIN HTDA

ISOVECTOR ODD-EVEN BINDING ENERGY DIFFERENCE

Values of δ in MeV for two even-even core nuclei with SIII and $V_0^{(T=0)} = 0$, $V_0^{(T=1)} = -300 \text{ MeV.fm}^{-3}$

Core	²⁴ Mg	⁴⁸ Cr
δ (Koopmans)	0.033	-0.004
$\delta(\mathrm{HF})$	-0.132	-0.137
$\delta(\text{corr})$	0.023	0.011
δ (HTDA)	-0.109	-0.126
$\delta(\exp)$	-0.110	-0.136

 \Rightarrow importance of core polarization (HF variational solution instead of Koopmans approximation) at least in light nuclei, correlations bring a small correction

GS PROPERTIES WITHIN HTDA

ISOVECTOR ODD-EVEN MASS DIFFERENCE

Values of δ in MeV for ²⁴Mg even-even core with SLy4 and $V_0^{(T=0)} = 0$, $V_0^{(T=1)} = -300 \text{MeV.fm}^{-3}$

Core	²⁴ Mg
δ (Koopmans)	0.035
$\delta(\mathrm{HF})$	-0.136
$\delta(\text{corr})$	0.047
δ (HTDA)	-0.089
$\delta(\exp)$	-0.110

 \Rightarrow conclusion insensitive to Skyrme parametrizations (to be checked with other parametrizations)

CONCLUSIONS

Core polarization:

- quenches the spin contribution to intrinsic magnetic moment (reproduction of empirical quenching factor)
- increases slightly isospin mixing (with approximate correction for spurious mixing)
- accounts for isovector odd-even mass difference
- Pairing correlations:
 - decrease in absolute value the magnetic moment (very sensitive to T = 0 pairing)
 - increase the isospin mixing

 \Rightarrow with the same strength for T = 1 and T = 0 pairing, and core polarization, $\alpha^2 (N = Z \pm 1) \lesssim \alpha^2 (N = Z)$