New Structures in ¹⁷⁸Hf and Coulomb Excitation of Isomers*

A.B. Hayes¹, D. Cline¹, C.Y. Wu², M.P. Carpenter³, J.J. Carroll⁴, D.M. Cullen⁵, B. Detwiler⁴, J. P. Greene³, T. Harle⁴, A.M. Hurst², R.V.F. Janssens³, S.A. Karamian⁶, T. Lauritsen³, N.M. Lumley⁵, P. Mason⁵, I. Mills⁴, S.V. Rigby⁷, D. Seweryniak³, T.P.D. Swan⁸, G. Trees⁴, P.M. Walker⁸, and S. Zhu³ ¹University of Rochester, Rochester, NY 14627, USA ²Lawrence Livermore National Laboratory, Livermore, California 94550, USA ³Physics Division, Argonne National Laboratory, Argonne, Illinois 60439, USA ⁴Department of Physics, Youngstown State University, Youngstown, OH 44555, USA ⁵School of Physics and Astronomy, University of Manchester, Manchester M13 9PL, UK ⁶Joint Institute for Nuclear Research, 141980 Dubna, Moscow Region, Russia ⁷Department of Physics, University of Liverpool, Liverpool L69 7ZE, UK ⁸Department of Physics, University of Surrey, Guildford GU2 7XH, UK

High-K isomers in ¹⁷⁸Hf exhibit electromagnetic (EM) transition hindrances ranging from 24 to 165 per degree of K-forbiddenness, indicating that K is a good quantum number independent of rotational effects. However, Coulomb excitation of the $K^{\pi}=6^+,8^-$ and 16^+ isomers in ¹⁷⁸Hf has been observed multiple times[1,2,3], raising the question of the origin of the apparent loss of K selection. Previous analysis deduced that the low-K bands were responsible for the K-mixing necessary to populate the high-K bands and showed that the mixing must be above I≈12 in the *yrast* band[3], but direct γ -decay transitions were below observable limits, consistent with the proposed B(M λ) values.

Recent Coulomb excitation of a 985 MeV ¹⁷⁸Hf beam (ATLAS) by a 500 μ g/cm² ²⁰⁸Pb target with CHICO+Gammasphere has yielded ~3×10⁹ p-p- γ events and approximately 368 γ -decay transitions involving 185 levels in 18 rotational bands, about 57 of which are newly identified. High-K isomer bands were populated at the 10⁻³ level normalized to the ground-state band (GSB).

A new "tilted" band crossing in the GSB provides a mechanism for the previously reported direct Coulomb excitation of the $K^{\pi}=6^+$ and 8^- two-quasiparticle isomer bands. Direct γ -decay feeding to some of the isomer band states has been observed, which could confirm the postulated breakdown of K conservation in the low-K bands[1]. There is evidence of a new band connected with the 16^+ , 31 year isomer band, which may be consistent with a γ -vibration built on the isomer.

*This work is sponsored by NSF, AFOSR, DOE, DTRA, STFC, and AWE plc.

- 1. J.H. Hamilton et al., Phys. Lett. B 112, 327 (1982).
- 2. H. Xie et al., Phys. Rev. C 48, 2517 (1993).

^{3.} A.B. Hayes et al., Phys. Rev. C 75, 034308 (2007); Phys. Rev. Lett. 96, 042505 (2006)