Chirality in the mass 80 region:⁷⁹Kr

T. Suzuki,^{1,2} T. Koike,³ T. Ahn,^{4,2} T. Fukuchi,⁵ P. Joshi,⁶ Y. Ma,³

Y. Miyashita,² G. Rainovski,⁷ N. Sato,² T. Shinozuka,² K. Shirotori,³

H. Tamura,³ J. Timár,⁸ M. Ukai,³ T. Wakui,² and A. Yamazaki²

¹RCNP, Osaka University, Ibaraki, Osaka, 567-0047, Japan ²CYRIC, Tohoku University, Sendai, 980-8578, Japan

³Department of Physics, Tohoku University, Sendai, 980-8578, Japan

⁴WNSL Yale University P.O. Box 208124 New Haven, CT 06520-8124 U.S.A.

⁵Center for Molecular Imaging Science, RIKEN, Chuo-ku, Kobe, 650-0047, Japan

⁶Department of Physics, University of York, YO10 5DD, UK

⁷St. Kliment Ohridski University of Sofia, Sofia, 1164, Bulgaria

⁸Institute of Nuclear Research (ATOMKI), Pf. 51, 4001 Debrecen, Hungary

The high spin states of ⁷⁹Kr were studied via the ⁷⁰Zn(¹³C, 4n) reaction to search for chiral doublet bands based on the three-quasi-particle configuration, $\pi g_{9/2}^{-2} \otimes \nu g_{9/2}^{-1}$. The ¹³C beam of 65 MeV was provided by the 930 AVF Cyclotron at Cyclotron Radio Isotope Center facility at Tohoku University and was bombarded onto the stacked 70%-enriched self-supporting ⁷⁰Zn targets. The γ rays were detected by the newly constructed Ge detectors array, Hyperball2. This array was designed to be shared between normal nuclear and hypernuclear γ -ray spectroscopy experiments. In the current work, the array was used in the optimized mode to the normal nuclear spectroscopy. The array consists of 14 co-axial detectors of ~65% retative efficiency and 6 Colver-type detectors placed at 90° relative to the beam axis. The absolute total photo peak efficiency of the array is ~4% for 1-MeV γ ray and the tripe coincidence data were taken. The side band structure to the $\pi g_{9/2}^2 \otimes \nu g_{9/2}^{-1}$ yrast band has been identified in ⁷⁹Kr. A tentative spin and parity assignments are made based on the DCO ratio and linear polarization analysis.

This single particle configuration is similar to those with $\pi h_{11/2}^2 \otimes \nu h_{11/2}^{-1}$ in the $A \sim 130$ region where the angular momenta of unpaired valence protons align along the short axis and that of a valence neutron along the long axis of a triaxial core. The doublet bands observed in ¹³⁵Nd have shown characteristic features consistent with spontaneous formation of chirality. If the nuclear chirality is geometrical in origin and not limited to a particular mass region, observation of doublet bands in the $A \sim 80$ region is expected and important to investigate, in addition to already relatively well studied mass regions of A ~100 and 130. A possibility of chirality for new band structure is discussed.