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50 50 years agoyears ago::

JohnJohn BBardeenardeen, Leon , Leon CCooperooper andand Robert Robert SSchriefferchrieffer ––
inin 19571957 formulatedformulated theory of superconductivity theory of superconductivity (BCS)(BCS). . 
((CooperCooper solutionsolution –– 1956)1956)
Nobel Nobel –– 19721972..



XIII WFJ 2006XIII WFJ 2006

20 20 years agoyears ago::

KarlKarl AlexAlex MMüüllerller andand GeorgGeorg JorgJorg BednorzBednorz ––
inin 1986 1986 discovered high temperature discovered high temperature 
superconductivity superconductivity (HTS) (HTS) in copper oxidesin copper oxides. . 
Nobel Nobel –– 19871987..
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Outline
�� Why study of nanograins might be interesting ?Why study of nanograins might be interesting ?

•• Superconducting nanograins in controlled conditions Superconducting nanograins in controlled conditions 
•• Nanograins exist in HTS (e.g. STM study of Nanograins exist in HTS (e.g. STM study of underdopedunderdoped

BiBi22SrSr22CaCuCaCu22OO8+8+δδ))
•• SrSr22RuORuO44 –– the role of small regions in exotic the role of small regions in exotic 

superconductors superconductors 
•• “Shape resonances” : old effect “Shape resonances” : old effect –– new possibilities  new possibilities  

�� Richardson’s solution of BCS problem in canonical Richardson’s solution of BCS problem in canonical 
ensembleensemble
•• The finite size effects in a twoThe finite size effects in a two--level model level model 
•• The role of temperatureThe role of temperature
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Why study of superconducting nanograins 
might be interesting ?

� Scientific interests:
• The spectrum of small system differs from the bulk one
• The parity (2n vs. 2n+1 electrons) effects important
• Novel quantum behaviour is to be expected (negative U 

center as an analog of the charge Kondo model) 
� Applications:

• Small superconducting box as a qubit 
• Shape resonances to enhance superconducting 

transition temperatures or other parameters 
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Superconducting nanograins in controlled 
conditions

M. Tinkham, J.M. Hergenrother, J.G. Lu
Phys. Rev. B 51 12 649 (1995).

D. C. Ralph, C. T. Black, M. Tinkham
Phys. Rev. Lett. 21, 4087 (1997)
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Superconducting nanograins in controlled 
conditions – tunnelling conductance

D. C. Ralph, C. T. Black, M. Tinkham
Phys. Rev. Lett. 21, 4087 (1997).
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STM study of Bi2Sr2CaCu2O8+δ

K.M. Lang et al.
Nature 415 412 (2002)

S.H. Pan, et al. 
Nature 413 282 (2001)

The inhomogeneity is manifested as
spatial variations in both the local density 
of states spectrum and the superconducting 
energy gap. These variations are correlated
spatially and vary on the surprisingly short 
length scale of ≈14 Å.

These observations suggest that underdoped
Bi2Sr2CaCu2O8+d is a mixture of two different 
short-range electronic orders with the long-
range characteristics of a granular supercond.
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Sr2RuO4 – the role of small regions in exotic 
superconductors

� Sr2RuO4 – the only perovskite
superconductor without Cu

� The first member of the Ruddlesden-Popper 
homologous series Srn+1RunO3n+1

� The first spin-triplet, odd-parity 
superconductor - solid state analogue of 3He
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Sr2RuO4 – the only perovskite
superconductor without Cu

Y. Maeno, H. Hashimoto, K. Yoshida, 
S. Nishizaki, T. Fujita, J.G. Bednorz,

and F. Lichtenberg,
Nature 372, 532 (1994).
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Parameters:
U||= 40 meV
U⊥=48 meV

fitted to Tc=1.5 K
give correctly:

- T dependence 
- jump of C/T

Too small penetra-
tion depth @0K 450A 
instead of 1900A

J. F. Annett. G. Litak, B. L. Gyorffy, K.I.W.
Phys. Rev. B 66, 134514 (2002).
Eur. Phys. J. B 36, 301-312 (2003).
phys. stat. sol. (b) 236, 325 (2003). ,
phys. stat. solidi B 241, 983-989 (2004).
Phys. Rev. B 73, 134501 (2006). 
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Ruddlesden-Popper homologous series
Srn+1RunO3n+1
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Sr2RuO4 – Sr3Ru2O7 eutectics  

Single crystals of Sr3Ru2O7do not show signs of superconductivity 
down to 20 mK ( R. S. Perry, et al. Phys. Rev. Lett.92, 166602 (2004).) but
“- three superconducting transitions observed in the Sr2RuO4-Sr3Ru2O7
-the lower two transitions originate from the Sr3Ru2O7 region alone. 
-The superconductivity observed in the Sr3Ru2O7 region is not caused
by a proximity effect at the bulk boundary of Sr2RuO4 and Sr3Ru2O7”

S. Kittaka, S. Fusanobori, H. Yaguchi, 
S. Yonezawa, Y. Maeno, R. Fittipaldi, 
A. Vecchione, cond-mat 0607151.
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“Shape resonances” : old effect – new 
possibilities (J. M. Blatt and C. J. Thompson, Phys. Rev. Lett. 10, 332 (1963))

Maciek Zgirski, 
Karri-Pekka Riikonen, 
Vladimir Touboltsev, 
Konstantin Arutyunov

The superconducting 
transition temperature 
first increases and 
then decreases with 
decreasing nanowire 
thickness.
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“Shape resonances” : old effect – new 
possibilities

A. A. Shanenko, et al.

“the size-dependent increase of the
superconducting temperature of (Al and
Sn) nanowires is well explained by the
shape resonance effect.”



Richardson’s solution of BCS problem in 
canonical ensemble 
(R.W.Richardson, N. Sherman, Nucl. Phys. B52,221(1964))
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N – no. of doubly degenerate single particle states, M – no. of pairs, Ne – no. of electrons=2M

The Hamiltonian:

Richardson’s solution: (see J.M.Roman, G. Sierra, J. Dukelsky, Nucl. Phys. B634 [FS] 483-510 (2002).)
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Richardson’s solution  - electrostatic analogy

-set of N   (– ½) charges located at fixed positions εj

-set of M   (+1) charges located at (unknown) equilibrium positions Eν

- electric field = - 1/2g acting on  

Electric field = - 1/2g 

Re E

Im E

Solution of the Richardson’s equations is 
equivalent to finding equilibrium positions 
of the blue (+1) charges subject to the action 
of the electric field (-1/2g), attraction by fixed 
red and repulsion by all other blue charges. 
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Two level model
Richardson has shown that the solutions:
eigenenergies E and eigenfunctions φ(µ) 
of the total interacting system, where µ is 
the number of pairs in the upper level 
(=0,1,2,….N1) are solutions of the follo-
wing set of equations:

ε0= 0,    Ω0

ε1= ε,    Ω1

ε0 and ε1 –positions of energy levels
Ω0 andΩ0 – their pair degeneracies
N – actual no. of pairs in the system.
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This is rare example 
of the exactly soluble 
interacting many body 
system.
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Two level model – the results
Finite size corrections: 

scale  g  g/N
find ground state e=EGS(N)/N

and excitation en. E(1)
ex=E1-EGS

...
2

)1,( 1 ++−−=== βN
B

N
AhghNe

β=4/3, at the critical point 
(both Dusuel,Vidal and 
our numerical work).
Average distance between
pairs ~N-1/3 . Corrections ~
1/volume, (1/surface)2, etc.

(R): R.W.Richardson (1965).
(V): S. Dusuel, J. Vidal, 
Phys. Rev A71(2005).
A. Ciechan, KIW, 
Acta Phys. Pol. 109, 569 (2006)
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Excitation energy E(1)
ex=E1-EGS
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Two level model – thermodynamics.
How to formulate it?

� One knows all eigenenergies and eigenfunctions of the 
interacting many body system!

� Calculate the partition function of the canonical 
ensemble

� But:
• we know the solution at T=0K only
• some of the energies are complex (numerical problem!) with

each complex energy is accompanied by the conjugate one
� Is it possible to formulate the thermodynamics? What 

is the dependence of the specific heat on temperature? 
The pair susceptibility and superconducting transition 
temperature of the small system? Coherence length?

TkeTZ B
E /1~~~~~~~~)( ==∑ − β
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Two Level Model: energies
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Two Level Model: specific heat
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Two Level Model: specific heat



XIII WFJ 2006XIII WFJ 2006

Heat capacity: Monte Carlo vs. RichardsonHeat capacity: Monte Carlo vs. Richardson

K. Van Houcke, S. M. A. Rombouts, L. Pollet

80
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ConclusionsConclusions

�� Many superconductors show small scale structures Many superconductors show small scale structures 
–– superconducting nanograins superconducting nanograins 

�� The exact Richardson solution exhibits quantum The exact Richardson solution exhibits quantum 
phase transition (at T=0K) from normal metal to  phase transition (at T=0K) from normal metal to  
BCS superconductorsBCS superconductors

�� Leading order corrections to the N=Leading order corrections to the N=∞∞ limit: limit: 
1/1/volume=1/N; 1/Nvolume=1/N; 1/N4/34/3=(1/surface)=(1/surface)22

�� Open issue:Open issue:
•• Properly formulate finite temperature theory! (how to Properly formulate finite temperature theory! (how to 

define Tdefine T--dependent coherence length?)dependent coherence length?)
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