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Local Density Functional Theory

H=T+Z’U —I—Z’UCOUI

1#£] 1#£]
h2

T = — —A;
> 5o

7

EHK[’I’L] - \Illgfn < \I/|H|\If >,

where | > is an arbitrary normalized N-particle

state.

The short notation ¥ — n hereinafter means the
many-to-one mapping of the wave function

U(x1,...,xnN) to the local density n(r)

In the local DFT the minimum of the functional
Enk[n] is proved to be just the true ground-state
energy g and is attained for the true ground-state
density ngg.
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Kohn-Sham method

e E.H. Lieb, Int.J.Quantum Chem.,243 (1983)

If n(r) >0, [n(r)dr =N, [(V/n(r))?dr < co,
then there exists an N -particle Slater-determinant

wave function Yo built up from an orthonormal set of

N single-particle wave functions ;:

\Ijo(wla ) LEN) — (N!)_l/Qdet{Qoi(wj)} ’

such that g — n(r). In other words there is a
many-to-one mapping of N-particle Slater ¥
determinant wave functions onto the local particle

density n(r).

This theorem enables one to define the kinetic-energy
functional Tp[n] for a system of non-interacting

particles:

To[n] = inf < Uo|T|Tg >,

Yog—n
and to divide the HK functional Ef i [n] as:
Epk[n] = To[n] + W]n],

where the energy functional W[n] contains the
potential energy as well as the correlation part of the

kinetic energy.
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e As the density n is produced by some

Slater-determinant wave function, we have

N
ng(r) =33 lpi(r, 0,02

and

N
h2
Tolnl =3~ 5 [ IVei(r.o,0)Par
1=1 0,q

Applying the variational principle to the functional

%

Er i [n] with functions ¢;, ¢} as functional variables,

one obtains the following KS equations:

hHKP: = €ivi,

with
2

h
hgr = ——A+U('r),

2m
where U(r) = §W/n is the local mean-field potential
and €; are the Lagrange multipliers to ensure the
normalization condition of the single-particle wave

functions ;.
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DFT in nuclei

e H is a N-particle Hamiltonian with an effective NN

interaction:

=T+ Y65 +95) + oG
i7] 17 ]

where

05, = > [wn + bn P — hnPJ; — mn P P]lun(s),

and

059 ’I:W()(O'i + O'j) . [k, X 5(’)"2 — ’I"j)k] ,

’l,_]:

e We define the quasi-local HF energy functional as

£QL — / drio(r) .

where
2

h
Ho = o (T F7p)+H D+ HEL G+ HDT +HEL R +H™
m

e The residual correlation energy entering our energy
functional is taken from the phenomenological ansatz

FBreli] = 2 [ drn®(r)[(2+z9)n?(r)

— (223 +1) (n%('r) + ni(r))]
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p= [ dR[h rorr(R) | +3p(F) [ dsplF-9u(R, 9+ ()

<

e ETF density matrix. For a spherical local potential it

reads:
s = 3j1(kFs) J1(kFs)
R = _ —A k — 66—
pETF(R,S) P s T 72 pljo(kFs) ks ]
s2 (Vp)2 . 11(krs
216 p krs
e Energy

2m

e Exchange Energy

1 952 (kps)

<L (R) = <L (R) 4 ETE (R) = Go(R) [ dsv(s) 257
h? 3 1 (Vp)?2 1

—[(f = V) (teTF — —k%p — —Ap) + ka;( (Vo) _ —Ap)]
2m 5 36

e Effective Mass

— m m —
f(RE)= —=— =14+ 5 Ver k(R k)

m* (R, k) h2k?
calculated at k = kp(R).

e In the Kohn y Sham approach 7T is changed by

TKS




Single-particle equations

e Appplying the variational principle to the energy
functional £QL[pg 1] with ¢;, @7 as functional
variables. The resulting single-particle equations are:

hqvi = €i¢i
where
[ )
2
hg=-V V +Uy(r) —iWy(r) - [V X o],
2my (7r)
and
[ )
K2 SEQL 5ERL SEQL
= Uqg(r) = Wy(r) =

2m*(r)  O1qe(r)’ §J4(r)
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e Coulomb Exchange Energy

2

6535,% = —2(2)1/3,04/3 - 43%(;2)1/3 (;73),
‘He 150 0Cq
QM  -0.86 -2.98 -7.46
NV -0.47 -2.31 -6.42
CB -0.78 -2.75 -7.03
SL -0.74 -2.75 -7.05
ETF -0.82 -2.89 -7.31

e QM, SL, NV y CB from

X. Campi y A. Bouyssy, Phys. Lett. B73 (1978)

263.
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160 40Ca 48Ca 90Zr 208Pb

B: DFT-R° 120.2 329.6 407.5 772.1 1623.3
DFT-A2 127.3 341.9 415.0 783.9 1636.6
HF 129.6 344.6 416.7 785.6 1638.9

rn:  DFT-RY 272 341  3.62  4.29 5.59
DFT-R?* 269 3.39 3.61 4.28 5.58
HF 2.65 3.37  3.58  4.27 5.57
rp: DFT-RY 2,75 346 347  4.24 5.44
DFT-hR?  2.71 3.44  3.46  4.23 5.44
HF 2.67 341 344  4.21 5.44
Sn:  DFT-R® 1220 13.21 9.31 11.87 745
DFT-R? 14.55 15.36 9.52  12.02 8.03
HF 15.08 16.04 9.66 11.88  7.80
Sp:  DFT-R® 898  6.43 14.07 7.43 8.17
DFT-h? 11.24 845 16.51 8.25 9.29
HF 12.53 9.27 17.09 8.36 9.51
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Including pairing correlations (BCS level)
h ¢y =ex 3

_ 2ix +1 Cpp A)J
Ax = (AZ) ra(tV0 2Fy\

We use the pairing matrix elements

2
Vi = 2m S-S v aoroloy’ {Wl,z'
1=1 L

. 8(.7 _l)(j/ _l,) L _
+Wo 4 2 D T 1) 11+ 1) +U (" +1)— L(L+1)] }

Wii=W;—By—H; +M; Wy, =W;+ B; — H; — M;,

where
, %)
Vir =/0 driri X
o0
/ dry 13 v; 1 (r1,72) Ra(r1) Ry (r1) Ra(r2) Rys (r2)
0

2 2 2
v; (r1,r2) =L (2 riro/pd) e~ (ritra)/ui

and

(AA)

V) =2 10 (B2) ] o= 2

ng 32

VPP 5q>\ 4y /0 dr r2 Rf (r) R)\Q, (r) VPP(n(r)).
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e HF and HFB from J. Dechargé and D. Gogny, Phys.
Rev. C 21, 1568 (1980).

e QLDFT from V. B. Soubbotin, V. I. Tselyaev, and X.
Vinas, Phys. Rev. C 67, 014324 (2003).

HF  QLDFT
11259y -948.301  -949.504
H4gn  -968.403  -969.709
1165y -985.701  -987.205
1183n  -1002.164 -1003.611
120G6n  -1018.898  -1020.229
1228y -1032.187  -1033.856
1243y -1045.901 -1047.783

HFB EQLT1 EQLT?2
1128 -953.065  -953.064  -954.559
1148y -971.434  -971.538  -972.972
11657 -988.939  -989.184  -990.592
1189y -1005.553 -1005.970 -1007.417
1208n  -1021.310 -1021.967 -1023.481
1228n  -1036.295 -1037.288 -1038.837
1249 -1050.605 -1052.045 -1053.533

a\
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® HFB from M. Kleban, B. Nerlo-Pomorska, J. F.

Berger, J. Dechargé, M. Girod, and S. Hilaire, Phys.

Rev. C 65, 024309 (2002).

<

experiment HFB EQLT2 EpBagrs An
1008y -824.800  -831.276  -827.125 0.00 0.00
1028 -849.090  -853.512  -849.971 -5.96 1.31
1045n -871.890  -874.888  -871.850 -9.99  1.68
1065 -893.870  -895.463  -892.794 -13.15 1.91
1088y -914.626  -915.297  -912.862 -15.81 2.07
1105 -934.571  -934.424  -932.146  -17.77 2.17
1128n -953.531  -952.857  -950.712  -18.95 2.22
1148 -971.574  -970.596  -968.592  -19.42 2.22
1165y -988.684  -987.636  -985.794 -19.39 2.19
118350 -1004.954 -1004.018 -1002.325 -19.01 2.15
1205y -1020.546  -1019.778 -1018.198  -18.38  2.09
1228n -1035.529  -1034.978 -1033.442 -17.41 2.01
1248n -1049.963  -1049.655 -1048.090 -15.92 1.91
126G5n -1063.889  -1063.836 -1062.173  -13.69 1.75
128G8n -1077.345  -1077.538  -1075.715  -10.49  1.52
13080 -1090.293  -1090.763  -1088.784 -6.42 1.18
1328n -1102.851  -1103.496 -1101.182 0.00 0.00




S,, (MeV)

® T'wo-neutron separation energies of tin isotopes in the
1008y-1328n range. The EQLT1 and EQLT?2 plus
BCS results are displayed by the solid and broken
curves correspondingly. The HFB results (filled
circles) as well as the experimental values (open

circles) are also shown.

e HFB from M. Kleban, B. Nerlo-Pomorska, J. F.
Berger, J. Dechargé, M. Girod, and S. Hilaire, Phys.
Rev. C 65, 024309 (2002).
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® Average pairing gaps obtained from the EQLT2+4+BCS

(solid line) and EQLT1+4+BCS calculations (broken
line) compared to the HFB results.

e HFB from J. Dobaczewski, W. Nazarewicz,
T. R. Werner, J. F. Berger, C. R. Chinn, and
J. Dechargé, Phys. Rev. C 53, 2809 (1996).

17
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The non-local generalization of the DFT

e We define the energy functional

Eolpo] = ‘I,inf < Uo|H|Tg >,

0—"P0

e Uy is any Slater-determinant wave function as the one
defined previously , pg is the single-particle DM
produced by ¥g and H is an effective many-body
Hamiltonian which generally does not coincide with
the microscopic Hamiltonian H.

e We define the residual correlation energy EFrc as
Erc[n] = E[n] — Eo[n], n={np,nn},
E[n] = inf < V|H|¥ >,
U —n

Eo[d] = inf < Uo|H|¥o >= inf inf < Wo|H|¥o >
Uog—n po—n Yo—po
= inf Ep[po] -
pPo—MN

e The energy functional of the non-local DFT is given
by
E[po] = Eolpo] + Erc[n],

which main property is

inf E[po] = inf inf E[po] = inf E[n] = Egg,
PO n

n pg—n

e FEg is the true ground state energy of the interacting
system as in the case of the HK theory.

<

/
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Reduction to the quasilocal theory

e We introduce a reduced energy functional 58’2 L which
depends the local particle ng , kinetic-energy 74, and

spin J4 densities for neutrons and protons:

na(r) = 3 [ de's(e - a')po(e,a)
() = 3 [ da'd(e o)V, V(e

Jor) = iy / dz'5(r — 118, o [(@)or.o X Vrlpo(a, '),

where §(x —2') = 0(r —7')0, 518, 4

e Using the notation pgr = {np,nn, 7p, Tn, Jp, Jn} we
define the quasi-local energy functional as:

8QL[PQL] = 5(?L[PQL] + Ercl[n],

e por] = inf  Elpo).

PO—PQL
e Notice that the many-to-one mapping po — pgr, is
established according to the previous equations, and
that n € pgr. Finally

inf £9%[pqL] = Eas -
PQL

19
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Generalization with account of pairing

correlations

e We generalize the QLDFT starting from the extended

density matrix (EDM), which in matrix form reads

i
R

where p(z,z’) = (U|al(2') a(z) |¥) is the normal DM,
k(x,x") is an auxiliary quantity which has a sense of
an anomalous DM k(z,2") = (¥|a(z’) a(x) |T) , but
wich does not concide with k in the general case.

The main condition imposed on the matrix < is that
the EDM be idempotent (R? = R) . This matrix can
be easily constructed in the canonical basis where the
DM p is diagonal. The quasiparticle-vacuum wave
function ¥ is just the one that produces the EDM R
through the many-to-one mapping U — R.

For an arbitrary nonlocal DM p(z,x') , corresponding
to some interacting fermion system, there are a
quasiparticle-vacuum wave function U and a EDM R
such that ¥ — R — p exists. This statment can be
considered as as a generalization of the Lieb theorem
proved for the local particle density and the

Slater-determinant wave functions.
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e To extend the DFT one defines a functional which

depends only on the normal nonlocal DM p

Elp] = inf (| H|®)
v—p

where H is the exact non-relativistic many-body
Hamiltonian and ¥ an arbitrary normalized

many-fermion wave function

e As previously, we introduce an auxiliary functional

Se)
>
A
2
i
I
™
RS
Rt

U—p, R, k¥

where W are the quasiparticle-vacuum wave functions.

In analogy with the discussion in the local case, we

introduce the residual correlation energy as:
5[p, R, ’%*] - g[pa K, f-{‘,*] + ERC’[P] .
which main property is

inf E[p, k, ] = inf Ep] = Eqggs,
0

= X
, K

X

P,

where Egg is the exact ground-state energy.

VR = inf (U |H|T),
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Reduction to the extended quasilocal
theory
We can simplify the motion equations by reducing the
total energy functional E[p, R, K*] to a quasilocal form. In
addition to pgr, defined previously, we define the

quantities 3¢ which have the meaning of local anomalous

densities:
wg(r) = iZ/dw'cS('r—r')5q,q/(ay)a;,ak(w,w')

We define the following quasilocal energy functionals:

gRLL R, k"] = inf E&lp, &, &*],
pus R R =t Elp i #
EQL2por, 2, 2] = inf inf inf E[p, Rk, £¥].

P—=PQL K—»3x K*—3c*

The difference between these two versions of the quasilocal
approach lies in the definition of the pairing field which in
QL1 reads

A = —26EQL1 /5

as in the nonlocal theory, and
A==2i8(r—1")8, 4 (0y)g o1 6ELT2 [53¢% (v)

in QL2, where the pairing field is completely local.




