XIII Nuclear Physics Workshop, Kazimierz Dolny, Poland, 28.09.2006

# Particle number conserving approach to correlations

Kamila Sieja

UMCS, Lublin & CENBG, Bordeaux



# 1964-1972 generalized BCS approaches

A.M. Lane, Nuclear Theory (1964) Benjamin, New York

A. Goswami, Nucl. Phys. 60 (1964) 228

P. Camiz, A. Covello and M. Jean, Nuovo Cimento 36 (1965) 663, ibid. B42 199

A. Goswami and L. Kisslinger, Phys. Rev. 140 (1965) B26

H. Chen and A. Goswami, Phys. Lett. B24 (1967) 257

A.L. Goodman, G. Struble and A. Goswami, Phys. Lett. B26 (1968) 260

A.L. Goodman, Nucl. Phys. A186 (1972) 475.

## **Motivation**



 $\delta V_{pn} = 0.25 \left[ (B(N,Z) - B(N-2,Z)) - (B(N,Z-2) - B(N-2,Z-2)) \right]$ 

# **BCS & pn-pairing**



## Particle number and isospin non-conservation

$$|BCS\rangle = \prod_{k} [u_{k1p}u_{k2n} - u_{k2p}u_{k1n} + (v_{k1p}u_{k2n} - v_{k2p}^{\star}u_{k1n})a_{kp}^{\dagger}a_{\bar{k}p}^{\dagger} + (v_{k2n}u_{k1p} - v_{k1n}^{\star}u_{k2p})a_{kn}^{\dagger}a_{\bar{k}n}^{\dagger} + (v_{k2p}^{\star}u_{k1p} - v_{k1p}u_{k2p})a_{kp}^{\dagger}a_{\bar{k}n}^{\dagger} + (v_{k1n}^{\star}u_{k2n} - v_{k2n}u_{k1n})a_{\bar{k}p}^{\dagger}a_{kn}^{\dagger} + (v_{k1p}^{\star}v_{k2n} - v_{k1n}^{\star}v_{k2p}^{\star})a_{kp}^{\dagger}a_{kn}^{\dagger}a_{\bar{k}n}^{\dagger}]|0\rangle$$

## **Higher Tamm-Dancoff Approximation**

[1] N. Pillet, P.Quentin and J. Libert, Nucl. Phys. A687 (2002) 141.

[2] N. Pillet, PhD report, Bordeaux 1 University, 2002.

[3] T.L. Ha, PhD report, Bordeaux 1 University, 2004.

$$\hat{H} = \hat{K} + \hat{V}$$

$$\hat{H}_{\rm HF}|\Psi_0\rangle = E_0|\Psi_0\rangle$$

$$|\Psi\rangle = \chi_0 |\Psi_0\rangle + \sum_{1 \text{p1h}} \chi_1 |\Psi_1\rangle + \sum_{2 \text{p2h}} \chi_2 |\Psi_2\rangle + \cdots$$

$$\sum_{i} \chi_i^2 = 1$$

## **Self-consistency**

![](_page_6_Figure_1.jpeg)

![](_page_7_Figure_1.jpeg)

#### **GS** properties of N = Z even-even nuclei

![](_page_8_Figure_1.jpeg)

$$E_{\rm corr} = \langle \Psi | \hat{H} | \Psi \rangle - \langle \Psi_0 | \hat{H} | \Psi_0 \rangle$$

$$E_{\rm cond} = E_{\rm corr} - \sum_i \chi_i^2 E_i^{\rm p-h}$$

![](_page_8_Figure_4.jpeg)

## **Occupation probability**

![](_page_9_Figure_1.jpeg)

|                  | neutrons |       |                           | protons |       |                          |
|------------------|----------|-------|---------------------------|---------|-------|--------------------------|
| nucleus          | 0p0h     | 1p1h  | 2p2h <mark>(pe)</mark>    | 0p0h    | 1p1h  | 2p2h <mark>(pe)</mark>   |
|                  |          |       |                           |         |       |                          |
| $^{62}$ Ge       | 67.8     | <0.01 | 32.2 <b>(30.0)</b>        | 54.0    | <0.01 | 46.0 <mark>(44.4)</mark> |
| $^{64}$ Ge       | 52.8     | <0.01 | 47.2 <mark>(45.85)</mark> | 54.6    | 0.0   | 45.3 <mark>(43.6)</mark> |
| <sup>66</sup> Ge | 61.0     | <0.01 | 39.0 <mark>(36.6)</mark>  | 54.0    | <0.01 | 46.0 <mark>(44.3)</mark> |
| $^{68}$ Ge       | 41.7     | 0.03  | 58.2 <mark>(57.0)</mark>  | 60.3    | <0.01 | 39.7 <mark>(38.0)</mark> |

\*pe-pair excitation

# **Proton-neutron pairing in HTDA method**

$$\begin{split} |\Psi\rangle &\equiv |\Psi^{n} \otimes \Psi^{p}\rangle \\ &= \chi_{0} |\Psi_{0}^{n} \otimes \Psi_{0}^{p}\rangle \\ &+ \sum_{(1p1h)_{n}} \sum_{(1p1h)_{p}} \chi_{11} |\Psi_{1}^{n} \otimes \Psi_{1}^{p}\rangle \\ &+ \sum_{(2p2h)_{n}} \chi_{20} |\Psi_{2}^{n} \otimes \Psi_{0}^{p}\rangle \\ &+ \sum_{(2p2h)_{p}} \chi_{02} |\Psi_{0}^{n} \otimes \Psi_{2}^{p}\rangle \\ \end{split}$$

# Model space: $E_{cut}^{p-h}$ =50 MeV, $E_{cut}^{sp}$ =30 MeV

| nucleus          | number of sp levels <mark>n/p</mark> | number of configurations |
|------------------|--------------------------------------|--------------------------|
| $^{62}$ Ge       | 182/260                              | 1822                     |
| $^{64}$ Ge       | 220/214                              | 1893                     |
| <sup>66</sup> Ge | 230/270                              | 2432                     |
| $^{68}$ Ge       | 234/216                              | 2146                     |

![](_page_12_Figure_2.jpeg)

# **GS** wave function decomposition

![](_page_13_Figure_1.jpeg)

# **Correlation energy**

![](_page_14_Figure_1.jpeg)

Wigner energy

![](_page_15_Figure_1.jpeg)

XIII Nuclear Physics Workshop, Kazimierz Dolny, Poland, 28.09.2006

– p. 16/17

- We have applied an approach conserving particle number and isospin to describe pn pairing;
- The qualitative description of isoscalar pairing is similar to that of BCS+LN method;
- α clustering
  low lying collective states
  isomeric states
  β-decay rates