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The Pairing interaction plays a very important role in the
description of the low-lying spectrum of atomic nuclei

in the ground state

Binding energies

Mass parabolas

Jπ of the ground state

and the excited states

Level density around Fermi surface

Moments of inertia

Collective masses
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The standard nuclear pairing interaction favors the coupling of like
nucleons to J = 0 to maximize the spatial overlap

similar to a Cooper pair in the theory of superconductivity

mean field description in terms of BCS wave functions

|ϕ〉 =
∏

(uk + vka+
k a+

k̄
)|−〉

or the more general HFB wave function

|ϕ〉 =
∏

βk |−〉

βk =
∑

Ulkcl + Vlkc+
l
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both the BCS and HFB wave functions do not have a definite number of

particles and therefore both violate one of the “symmetries” of the

hamiltonian (preservation of particle number)

the mean field approximation leads to spontaneous symmetry
breaking in the wave function

Nice mechanism to incorporate correlations into the mean field wave

function

but it is unphysical as the real wave function of the atomic nucleus
has to preserve the symmetries of the hamiltonian in the
traditional sense

Not important in Condense Matter as the consequences of symmetry

restoration in observables go as the inverse of the number of particles

(degrees of freedom)

but relevant in Nuclear Physics
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If it is required to have

Wave functions with the right symmetries

not to loose the simplicity of the mean field and the
correlations included by the spontaneous symmetry breaking
mechanism

Particle Number Projected (PNP) wave functions

|ΨN〉 = P̂N |Φ〉

|Φ〉 is a HFB wave function

P̂N = 1
2π

∫ 2π
0 dϕe i(N̂−N)ϕ

Why the hassle if we have so many exactly solvable models at
hand ?
In Nuclear Physics pp and ph channels are strongly interconnected
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Projected energy

EN =
〈Φ|HPN |Φ〉
〈Φ|PN |Φ〉

=

∫
dϕh(ϕ)e−iNϕ∫
dϕn(ϕ)e−iNϕ

n(ϕ)
h(ϕ)

= 〈Φ| 1
H

e i N̂ϕ|Φ〉

Hamiltonian overlap h(ϕ) and norm n(ϕ) are evaluated with the help of

the extended Wick theorem

Kamlah expansion

h(ϕ) =
∑M

m=0 hm Îmn(ϕ) with Î = −i∂ϕ − 〈N〉.

For M=1 we have EN
M=1 = 〈Φ|H − h1(N̂ − N)|Φ〉

The minimum of EN
M=1 with the constraint 〈Φ|N̂|Φ〉 = N is

equivalent to minimizing 〈Φ|(H − h1N̂)|Φ〉
For M=2 we have EN

M=2 = 〈Φ|H − h1(N̂ − N)− h2(N̂ − N)2|Φ〉
An expansion in terms of powers of (N̂ − N)2
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There are two main variational strategies to determine the intrinsic
HFB wave funtction |Φ〉

Variation after projection (VAP) |Φ〉 is determined as to

minimize the projected energy EN

Projection after variation (PAV). |Φ〉 is determined as to

minimize the intrinsic HFB energy. EN is computed afterwards

The most relevant degree of freedom related to PNP is the particle
number fluctuation 〈Φ|∆N2|Φ〉

Restricted VAP (RVAP) A restricted variational space where

〈Φ|∆N2|Φ〉 is used as variational parameter

If the approximate Kamlah expansion is used for EN and M=2
then RVAP becomes the Lipkin Nogami method
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An example in a very simple model
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T.R.Rodriguez, J.L. Egido and LMR Phys. Rev. C72 064303 (2005)
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Until recently PNP had been implemented only in model
calculations with restricted configuration spaces (a couple of
major shells) and simplified interactions (PPQ hamiltonian)

In the 90’s the Lipkin Nogami method was very popular and
was used with Skyrme and Gogny forces

Recently the full PNP+VAP has been implemented with the
Gogny force and PNP+LN has been implemented with
Skyrme interactions

Full VAP is still computationally expensive

Technical difficulties are also present as well as some more
fundamental problems of how to define the density dependent
term typical of Skyrme or Gogny forces for PNP energy
functionals.
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Technical difficulties: the pole problem

The pole problem appears in the evaluation of two-body

operator overlaps when the norm overlap 〈Φ|e iϕN̂ |Φ〉 becomes
zero.

〈Φ|e iϕN̂ |Φ〉 = 0 when one of the BCS occupancies vk equals
1/2 and ϕ = π/2

In this case the overlap

〈Φ|c+
k c+

l cmcne
iϕN̂ |Φ〉 = (

∑
Contractions)〈Φ|e iϕN̂ |Φ〉

is finite but each of the contractions in
∑

Contractions
diverges. There is a cancellation between the direct, exchange
and pairing contractions.

M. Anguiano, J.L. Egido and LMR, Nucl Phys A696, 467 (2001)
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A real problem as it is common to discard some contributions of
some parts of the interaction for the Skyrme or Gogny forces. The
most usual is the case of the Coulomb interaction.
Bad for VAP but you may be lucky with PNP+LN

The solution is to consider all contributions, direct, exchange and
pairing for each piece of the interaction

and then you live happily forever after ..... except for a bad guy
called Coulomb

but considering Coulomb exchange and pairing multiplies by a factor 6-7
the computing time for the finite range Gogny force.

For Zero range forces like Skyrme you will be force to introduce into your

computational scheme the hassle of finite range forces ... or to find a way

to regularize the divergences (ask Michael Bender )
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The density dependence problem

Skyrme and Gogny interactions are very popular at the mean field
level as they allow the calculations of many nuclear properties all
over the Nuclide Chart with the same set of parameters
Most of theirs sucess comes from their density dependence

VDD(ρ) = t3δ(~r1 −~r2)ρ
α(

1

2
(~r1 +~r2))

Phenomenological and very hard (if not impossible) to
deduced them from first principles

They produce a strongly repulsive interaction energy

State dependent interaction:
To compute 〈Φ|ĤDD |Φ〉 use ĤDD = f [ρ] with ρ = 〈Φ|ρ̂|Φ〉
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In the GCM and projection one has to deal with linear
combinations of mean field wave functions (HF or HFB) |Φ(q)〉

|Ψ〉 =

∫
dqf (q)|Φ(q)〉

E =
〈Ψ|H|Ψ〉
〈Ψ|Ψ〉

=

∫
dqdq′f ∗(q)f (q′)H(q, q′)∫
dqdq′f ∗(q)f (q′)N (q, q′)

Hamiltonian and norm overlaps

H(q, q′) = 〈Φ(q)|Ĥ|Φ(q′)〉 N (q, q′) = 〈Φ(q)|Φ(q′)〉
Evaluated with the extended Wick’s theorem for overlaps

For the GCM+GOA second derivatives of H(q, q′) are needed

how to define the DD interaction for hamiltonian overlaps ?

〈Φ(q)|Ĥ|Φ(q′)〉

L.M. Robledo Particle number restoration: its implementation and impact in nuclear structure calculations



Introduction
Particle Number Projection

Problems
Some results

A prescription is required for the calculation of the density
dependent part of 〈Φ(q)|Ĥ|Φ(q′)〉 in order to compute energies
As it may lead to a complex and/or symmetry breaking density
dependent term we have to make sure it yields energies that are

1 real numbers
2 invariant under symmetry transformations (scalar)

we also want to have a framework consistent with the underlying
mean field approximation

1 Reduce to the mean field DD term when |Φ(q)〉 = |Φ(q′)〉
2 Produce consistent results for ”mean field like” quantities like

Chemical potentials
RPA equation

Mixed density ρq,q′ = 〈Φ(q)|ρ̂|Φ(q′)〉/〈Φ(q)|Φ(q′)〉
For PNP ρϕ = 〈Φ|ρ̂e iϕN̂ |Φ〉/〈Φ|e iϕN̂ |Φ〉
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Caveats

As the mixed density is complex in general and is raised to the
power α (1/3 typically) which Riemman sheet should be
chosen for the evaluation of ρα(~r) ?

What to do if 〈Φ|e iϕN̂ |Φ〉 = 0 ?

In this case the mixed density diverges !
But the singularity is integrable if α < 1

These questions need to be addressed before we can move forward
in the use of PNP with effective forces like Gogny, Skyrme

if you close your eyes and use another prescription (the projected
density prescription) not consistent but real and not diverging then
you can obtain some results ... (I am not so pesimistic ...)
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Tin isotopes
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Comparison of different theoretical
approaches concerning the pairing
correlation energy
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Moments of inertia PAV
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Moments of inertia
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