Favoured high-spin states in $N \approx Z$ nuclei close to 100 Sn

Ingemar Ragnarsson

and

Gillis Carlsson

LUND INSTITUTE OF TECHNOLOGY

Outline

- Special features of $I = 21^+$ state in 94 Ag.
- Microscopic energies at high spin examples, typical values.
- Microscopic energies for fully aligned states with holes in Z = N = 50 core.
- Favoured shell energies for specific combinations of quadrupole deformation ε_2 and rotational frequency ω .
- Summary

$I = 21^+$ state in ${}^{94}\text{Ag}$

- Long half-life of 0.39 s
- Decays by 'β-delayed γ or proton emission', 'direct 1-p' or 'direct 2-p' emission.
- Unexpected large 2p decay probability has been taken as evidence that this I = 21⁺ state is strongly deformed (I. Mukha *et al.* Nature 439, 298 (2006))

Aligned $I = 21^+$ state

Z = 47, N = 47

Ground state: $\pi(g_{9/2})^{-3} \nu(g_{9/2})^{-3}$

 $I_{max} = 2 \cdot (9/2 + 7/2 + 5/2) = 21\hbar$

Small prolate deformation expected!

Aligned $I = 21^+$ state

Z = 47, N = 47

Ground state: $\pi(g_{9/2})^{-3} \nu(g_{9/2})^{-3}$

 $I_{max} = 2 \cdot (9/2 + 7/2 + 5/2) = 21\hbar$

Small prolate deformation expected!

CNS calculations: $\varepsilon \approx 0.06, \gamma = -120^{\circ}$ Absolute energy ? ≈ 15 MeV excitation energy at $\varepsilon \approx 0.6$.

In the macroscopic-microscopic model, the nuclear mass is calculated as

$$E_{\text{tot}}(Z, N) = \min_{\varepsilon_i} \left[E_{\text{ld}}(Z, N, \varepsilon_i) + E_{\text{shell}}(Z, N, \varepsilon_i) + \delta E_{\text{pair}}(Z, N, \varepsilon_i) \right]$$

An analogous formula at high spin, where pairing can be neglected, reads (G.B. Carlsson and IR, PRC, rapid comm. 2006)

$$E_{\text{tot}}(Z, N, I) = \min_{\varepsilon_i} \left[E_{\text{rld}}(Z, N, I, \varepsilon_i) + E_{\text{shell}}(Z, N, I, \varepsilon_i) \right],$$

The rotating liquid drop energy can be written:

$$E_{\rm rld}(Z, N, I, \varepsilon_i) = E_{\rm ld}(Z, N, \varepsilon_i) + \frac{\hbar^2 I(I+1)}{2\mathcal{J}_{\rm rig.}(Z, N, \varepsilon_i)}$$

FRDM model

Р.

47

Total energy:

$$E_{\text{tot}}(Z, N, I) = \min_{\varepsilon_i} \left[E_{\text{rld}}(Z, N, I, \varepsilon_i) + E_{\text{shell}}(Z, N, I, \varepsilon_i) \right],$$

Rotating liquid drop energy:

$$E_{\rm rld}(Z, N, I, \varepsilon_i) = E_{\rm ld}(Z, N, \varepsilon_i) + \frac{\hbar^2 I(I+1)}{2\mathcal{J}_{\rm rig.}(Z, N, \varepsilon_i)}$$

 E_{shell} from modified oscillator (CSN) - A = 110 parameters. E_{ld} : Lublin-Strasbourg drop (LSD model) (with average E_{pair} removed, cf. poster by Nerlo-Pomorska *et al*)

 $\mathcal{J}_{rig.}$: diffuse surface: $r_0 = 1.16$ fm, a = 0.6 fm (from fit of experimental $\langle r^2 \rangle$ -values)

Microscopic energies-general

Microscopic energy for high spin states. Min. value: ~ -2 MeV Typical error: ± 1 MeV Expected accuracy for I = 21 state in ⁹⁴Ag: ± 2 MeV

Microscopic energies - ⁷⁴Kr

⁷⁴Kr: 3 bands observed to I_{max} but do not terminate Large collectivity for $I = I_{max}$. J.J. Valiente-Dubón *et al.* PRL 95, 232501 (2005)

Generally good agreement for absolute energies but: Calculated energies too high for all bands close to $I = I_{max}$

Microscopic energies - Kr isotopes

High-spin bands in $^{72-74}{\rm Kr}$ well described (cf. talks by Afanasiev and Satula) Absolute energies within $\sim\pm0.7$ MeV. Note the similarities between $^{73}{\rm Kr}$ and $^{74}{\rm Kr}$.

Microscopic energies - ⁵⁸Ni

Large-deformation bands in ⁵⁸Ni.

 $(f_{7/2})^{-3}(h_{9/2})^2$ $(f_{7/2})^{-5}(h_{9/2})^3$

Well described in CNS - band crossing

D. Rudolph et al. PRL 96, 092501 (2006)

Error constant as function of *I*.

Typical errors in calc. E_{tot}

Typical error: $\pm 1 \text{ MeV}$ Maximal error: $\pm 2 \text{ MeV}$

¹⁰⁰Sn; ground state:

 $E_{micr} \approx -12 \text{ MeV}$

⁹⁶Cd; $\pi(g_{9/2})^{-2} \nu(g_{9/2})^{-2}$ $I_{max} = 16\hbar; E_{micr} \approx -8 \text{ MeV}$

⁹⁴Ag;
$$\pi(g_{9/2})^{-3} \nu(g_{9/2})^{-3}$$

 $I_{max} = 21\hbar; E_{micr} \approx -7 \text{ MeV}$

⁹²Pd;
$$\pi(g_{9/2})^{-4} \nu(g_{9/2})^{-4}$$

 $I_{max} = 24\hbar; E_{micr} \approx -6 \text{ MeV}$

Rotation around symmetry axis

One half of orbitals in a *j*-shell can be approx. degenerate for specific ratio, ω/ε .

Regions of high level density (cf. talk by J. Dudek)

and thus regions of low level density in between.

Very strong shell effects (I.R., PLB 80B, 4 (1978))

Strong shell effects for p-h excitations

Note the ridges of high shell energy and the valleys of low favoured shell energies in between For example I = 12 for N = 46.

Strong shell effects for p-h excitations

Combination of favoured particle numbers:

Z	N	Ι	E_{micr}	
			Exp	Calc
47	47	21	-5.6	-7.5
47	48	18.5	-7.2	-7.8
46	48	20	-5.8	-6.8
46	46	24		-6.4
45	45	25		-4.8
		29		-4.6

Exp. values uncertain $\sim \pm 1~{\rm MeV}$

I = 21 state in ⁹⁴Ag:

- Very favoured energy Z = N = 47 magic for I = 10.5.
- Small prolate deformation axis ratio \sim 1.06 : 1.

Region of nuclei with N = Z = 45 - 50 ($N \approx Z$):

- Large number of favoured energy fully aligned states interesting to study.
- Important to measure masses (and thus binding energies of high-spin states) to the N = Z line (or even beyond).

