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The Nuclear Mass

M(Z,N) = ZMH + NMn − B(Z,N)

B - Binding energy

M(Z,N) = Emacro(Z,N) + Emicro(Z,N)

Macroscopic model: Liquid drop

ELD = ZMH + NMn + Evol + Esurf + Ecoul + ∆̄oe + ...

Microscopic model:

Eshell + (Echaotic??)
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Chaotic Energy in the Nuclear Ground-State

Highly excited nuclei
Level statistics for neutron
resonances suggests GOE.
(Chaotic time-reversal
invariant system)

Ground-state region
Level statistics suggests Poisson
(Regular system)

Ũ = Mexp −Mmodel

√
Ũ2 ∼ 0.7 MeV

Typical chaotic energy??

Neutron Resonances

Ground-State region

A=155-185
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Quantum Chaos

Bohigas-Giannoni-Schmit Conjecture
Spectral fluctuations agree with

• GOE if the corresponding classical system is chaotic and
obeys time-reversal symmetry.

• Poisson if the corresponding classical system is integrable.

Nearest neighbor distribution

0 1 2 3
0

0.2

0.4

0.6

0.8

1

x

P
(x

)

GOE

0 1 2 3
0

0.2

0.4

0.6

0.8

1

x

P
(x

)

Poisson

XIII Nuclear Physics Workshop, Kazimierz Dolny 30 September 2006



Chaotic Motion inside 2D cavities

Area filling
orbits
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Periodic Orbit Theory

Random Matrix theory describe short energy range fluctuations
of the order of the mean level spacing.

Heisenberg time: τH = hρmean

Long energy range fluctuations are described by semi-classics.
Energy scale is defined by the shortest periodic orbit.

Ec =
h

τmin

In a ballistic system this correspond to the time of flight across
the system.
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Periodic Orbit Theory (II)

Mean field theory connects the quantum mechanical many-body
problem to classical mechanics.

Reduces the fully interacting many-body problem to
single-particle motion in a self-consistent potential.

The basic object is the single-particle level density

ρ(e, x) =
∑

i

δ(e − ei(x))

In a semiclassical ~-expansion

ρ(e, x) = ρmean(e, x) + ρfluct(e, x)

E(e, x) = Emean(e, x) + Eshell(e, x)
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The Trace Formula

Leading order in a ~-expansion gives a sum over classical
periodic orbits

Eshell(x) = 2~
2
∑

p,r

Ap,r(x)

r2τ 2
p

cos

[
rSp(x)

~
+ νp,r

]

Stability
amplitude
Ap,r

Classical
action

Sp =
∮

pdq

Maslov
index
νp,r

kkkkkkkkkkkkkkkkkkkkkkkkkkkkkkHQM(x) ↔ HCM(q, p)The second moment may be written
using the spectral form factor K(τ)

〈
E2

shell

〉
≈ ~

2

2π2

∫
∞

0

dτ

τ 4
K(τ)kkkkkkkkkkkkkkkkkkkkkk
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The Spectral Form Factor

The form factor is the Fourier transform of the two-point
correlation function.

Depending on the character of the dynamics the form factor can
be described by Random Matrix Theory.

Chaotic GOE: K(τ) = 2τ, τ ≪ τH

kkkkRegular: K(τ) = τH

τH = hρmean

F
or

m
 F

ac
to

r

τ

Chaotic

F
or

m
 F

ac
to

r
τ

Regular

XIII Nuclear Physics Workshop, Kazimierz Dolny 30 September 2006



τmin Approximation

Incorporates

• Shortest periodic orbit
(System dependent)

• Linear growth
(Universal chaotic dependence)
No τ dependence
(Universal regular dependence)

F
or

m
 F

ac
to

r

ττ
min

〈
E2

shell

〉
≈ ~

2

2π2

∫
∞

0

dτ

τ 4
K(τ)

Independent of any detailed information of the many-body
problem. Only parameter is τmin, which is related to the size of
the nucleus.

τmin ∼ 4R

vF

∼ A1/3
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Typical Chaotic Energy

σch =
√〈

Echaotic 2
shell

〉
=

=
2.8

A1/3
MeV

Mass models

Ũ = Mexp. −Mmodel

• Möller, et.al. (1995)

• Samyn, et.al. (2004)

• Duflo & Zuker (1995)
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Autocorrelation function between neighboring nuclei

When the external parameter x is varied, the autocorrelation
function is defined

C(x) = 〈Eshell(x0 − x/2)Eshell(x0 + x/2)〉x0

Leads to a double sum with interferent terms between different
periodic orbits. The main contribution comes from the shortest
orbits.
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Diagonal Approximation

C(x) = 2~
4
∑

p,r

A2
p,r

r4τ 4
p

cos

[
rQp

~
x

]
where Qp =

∂Sp

∂x

Using the spectral form factor

C(x) =
~

2

2π2

∫
∞

0

dτ

τ 4

〈
cos

(
Qpx

~

)〉

τ

K(τ)

Valid for regular or chaotic motion

XIII Nuclear Physics Workshop, Kazimierz Dolny 30 September 2006



Autocorrelation function

Assuming chaotic dynamics

CN(ζ) =

(
1 − ζ2

4

)
e−ζ2/4 +

ζ4

16
Γ(0, ζ2/4)

Γ(a, z) =

∫
∞

z

ta−1e−tdt

Universal function since all the
system dependent features are
hidden in the unfolding.

ζ =

√
2ατmin

~
x

ζ =

√〈
(∂xEshell(x))2

〉

〈Eshell(x)2〉 x
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Comparison with Mass Models

C(dN) =

〈〈
Ũ(Z,N)Ũ(Z,N + dN)

〉
N〈

Ũ2

〉
N

〉

Z

ζ =

√√√√√√

〈(
∂N Ũ

)2
〉

N〈
∂N Ũ2

〉

N

dN

Mass models

Ũ = Mexp. −Mmodel

• Möller, et.al. (1995)

• Samyn, et.al. (2004)

• Duflo & Zuker (1995)
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Conclusions on Chaotic Nuclear Masses

• Periodic Orbit Theory describe the regular and the chaotic
part of the shell energy on equal footing.

• The second moment of the chaotic shell energy agree well
with the typical size of the error in nuclear mass formulas.

• The correlations for the error between neighboring nuclei
agree well with estimates from periodic orbit theory assuming
chaotic dynamics.

• Periodic Orbit Theory predicts definite non-random
fluctuations. It may be a difficult task to compute the chaotic
contributions for each nucleus, but periodic orbit theory puts
NO á priori physical barrier to the accuracy of theoretical
mass calculations.
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