$\beta \beta$ decay and nuclear structure

F．Nowacki ${ }^{1}$

 ulpXIII Nuclear Physics Workshop Kazimierz Dolny
September 27－October 1， 2006

Outline

－$\beta \beta$ decay
－Shell model
－ 2ν calculations
－ 0ν calculations
－summary

$\beta \beta$ decay

Transition	$Q_{\beta \beta}(\mathrm{keV})$	Ab. $\left.{ }^{232} \mathrm{Th}=100\right)$
${ }^{110} \mathrm{Pd} \rightarrow{ }^{110} \mathrm{Cd}$	2013	12
${ }^{76} \mathrm{Ge} \rightarrow{ }^{76} \mathrm{Se}$	2040	8
${ }^{124} \mathrm{Sn} \rightarrow{ }^{124} \mathrm{Te}$	2288	6
${ }^{136} \mathrm{Xe} \rightarrow{ }^{136} \mathrm{Ba}$	2479	9
${ }^{130} \mathrm{Te} \rightarrow{ }^{130} \mathrm{Xe}$	2533	34
${ }^{116} \mathrm{Cd} \rightarrow{ }^{116} \mathrm{Sn}$	2802	7
${ }^{82} \mathrm{Se} \rightarrow{ }^{82} \mathrm{Kr}$	2995	9
${ }^{100} \mathrm{Mo} \rightarrow{ }^{100} \mathrm{Ru}$	3034	10
${ }^{96} \mathrm{Zr} \rightarrow{ }^{96} \mathrm{Mo}$	3350	3
${ }^{150} \mathrm{Nd} \rightarrow{ }^{150} \mathrm{Sm}$	3667	6
${ }^{48} \mathrm{Ca} \rightarrow{ }^{48} \mathrm{Ti}$	4271	0.2

2ν calculations

$\beta \beta$ decay

Transition	$Q_{\beta \beta}(\mathrm{keV})$	$\mathrm{Ab} \cdot\left({ }^{232} \mathrm{Th}=100\right)$
${ }^{110} \mathrm{Pd} \rightarrow{ }^{110} \mathrm{Cd}$	2013	12
${ }^{76} \mathrm{Ge} \rightarrow{ }^{76} \mathrm{Se}$	2040	8
${ }^{124} \mathrm{Sn} \rightarrow{ }^{124} \mathrm{Te}$	2288	6
${ }^{136} \mathrm{Xe} \rightarrow{ }^{136} \mathrm{Ba}$	2479	9
${ }^{130} \mathrm{Te} \rightarrow{ }^{130} \mathrm{Xe}$	2533	34
${ }^{116} \mathrm{Cd} \rightarrow{ }^{116} \mathrm{Sn}$	2802	7
${ }^{82} \mathrm{Se} \rightarrow{ }^{82} \mathrm{Kr}$	2995	9
${ }^{100} \mathrm{Mo} \rightarrow{ }^{100} \mathrm{Ru}$	3034	10
${ }^{96} \mathrm{Zr} \rightarrow{ }^{96} \mathrm{Mo}$	3350	3
${ }^{150} \mathrm{Nd} \rightarrow{ }^{150} \mathrm{Sm}$	3667	6
${ }^{48} \mathrm{Ca} \rightarrow{ }^{48} \mathrm{Ti}$	4271	0.2

Shell Model Problem

- Define a valence space
- Derive an effective interaction
- Build and diagonalize the

Hamiltonian matrix.

Shell Model Problem

－Define a valence space
－Derive an effective interaction

$$
\mathcal{H} \Psi=E \Psi \rightarrow \mathcal{H}_{\text {eff }} \Psi_{\text {eff }}=E \Psi_{\text {eff }}
$$

In principle，all the spectroscopic properties are described simultaneously（Rotational band AND β decay half－life）

Shell Model Problem

- Define a valence space
- Derive an effective interaction

$$
\mathcal{H} \Psi=E \Psi \rightarrow \mathcal{H}_{\text {eff }} \Psi_{\text {eff }}=E \Psi_{\text {eff }}
$$

- Build and diagonalize the Hamiltonian matrix.

Shell Model Problem

- Define a valence space
- Derive an effective interaction

$$
\mathcal{H} \Psi=E \Psi \rightarrow \mathcal{H}_{\text {eff }} \Psi_{\text {eff }}=E \Psi_{\text {eff }}
$$

- Build and diagonalize the Hamiltonian matrix.

In principle, all the spectroscopic properties are described simultaneously (Rotational band AND β decay half-life).

Shell Model problem

－Hilbert space
－hamiltonian： $\mathcal{H} \Psi=E \Psi$
－transition operator：$\langle\Psi| \mathcal{O}|\Psi\rangle$
－Valence space

G matrix：M．Hjorth－Jensen，T．T．S．Kuo and E．Osnes，
Realistic effective interactions for nuclear systems，
Physics Reports 261 （1995）125－270
need some phenomenology from experimental data：
－energies of states of（semi）magic nuclei

Shell Model problem

- Hilbert space
- hamiltonian: $\mathcal{H} \Psi=E \Psi$
- transition operator: $\langle\Psi| \mathcal{O}|\Psi\rangle$
- Valence space
- $\mathcal{H}_{\text {eff. }} \Psi_{\text {eff. }}=E \Psi_{\text {eff. }}$
- $\left\langle\Psi_{\text {eff. }}\right| \mathcal{O}_{\text {eff. }}\left|\Psi_{\text {eff. }}\right\rangle$

G matrix: M. Hjorth-Jensen, T.T.S. Kuo and E. Osnes,
Realistic effective interactions for nuclear systems, Physics Reports 261 (1995) 125-270
need some phenomenology from experimental data:

- energies of states of (semi) magic nuclei
- systematics of
$B(E 2)$ transitions > effective charge
GT transitions $>$ quenching factor

$(\beta \beta)_{0 \nu}$ decay

Specificity of $(\beta \beta)_{0_{\nu}}$ ：
NO EXPERIMENTAL DATA ！！！
prediction for m_{ν} very difficult easier for $m_{\nu}(\mathrm{A}) / m_{\nu}\left(\mathrm{A}^{\prime}\right)$
\qquad
\qquad

$(\beta \beta)_{0 \nu}$ decay

Specificity of $(\beta \beta)_{0_{\nu}}$ ：
NO EXPERIMENTAL DATA ！！！
prediction for m_{ν} very difficult
easier for $m_{\nu}(\mathrm{A}) / m_{\nu}\left(\mathrm{A}^{\prime}\right)$

What is the best isotope to observe $(\beta \beta)_{0_{\nu}}$ decay ？

$(\beta \beta)_{0 \nu}$ decay

Specificity of $(\beta \beta)_{0_{\nu}}$ ：

NO EXPERIMENTAL DATA ！！！

prediction for m_{ν} very difficult easier for $m_{\nu}(\mathrm{A}) / m_{\nu}\left(\mathrm{A}^{\prime}\right)$

What is the best isotope to observe $(\beta \beta)_{0_{\nu}}$ decay ？
What is the influence of the structure of the nucleus on $(\beta \beta)_{0_{\nu}}$ matrix elements？

Two neutrinos mode

The theoretical expression of the half－life of the 2ν mode can be written as：

$$
\left[T_{1 / 2}^{2 \nu}\right]^{-1}=G_{2 \nu}\left|M_{G T}^{2 \nu}\right|^{2}
$$

with

$$
M_{G T}^{2 \nu}=\sum_{m} \frac{\left\langle 0_{f}^{+}\left\|\vec{\sigma} t_{-}\right\| 1_{m}^{+}\right\rangle\left\langle 1_{m}^{+}\left\|\vec{\sigma} t_{-}\right\| 0_{i}^{+}\right\rangle}{E_{m}+E_{0}}
$$

－$G_{2 \nu}$ contains the phase space factors and the axial coupling constant g_{A}
－summation over intermediate states
－to quench or not to quench ？$\left(\sigma \tau_{\text {eff．}}\right)$

Two neutrinos mode

The theoretical expression of the half－life of the 2ν mode can be written as：

$$
\left[T_{1 / 2}^{2 \nu}\right]^{-1}=G_{2 \nu}\left|M_{G T}^{2 \nu}\right|^{2},
$$

with

$$
M_{G T}^{2 \nu}=\sum_{m} \frac{\left\langle 0_{f}^{+}\left\|\vec{\sigma} t_{-}\right\| 1_{m}^{+}\right\rangle\left\langle 1_{m}^{+}\left\|\vec{\sigma} t_{-}\right\| 0_{i}^{+}\right\rangle}{E_{m}+E_{0}}
$$

－$G_{2 \nu}$ contains the phase space factors and the axial coupling constant g_{A}
－summation over intermediate states

Two neutrinos mode

The theoretical expression of the half－life of the 2ν mode can be written as：

$$
\left[T_{1 / 2}^{2 \nu}\right]^{-1}=G_{2 \nu}\left|M_{G T}^{2 \nu}\right|^{2}
$$

with

$$
M_{G T}^{2 \nu}=\sum_{m} \frac{\left\langle 0_{f}^{+}\left\|\vec{\sigma} t_{-}\right\| 1_{m}^{+}\right\rangle\left\langle 1_{m}^{+}\left\|\vec{\sigma} t_{-}\right\| 0_{i}^{+}\right\rangle}{E_{m}+E_{0}}
$$

－$G_{2 \nu}$ contains the phase space factors and the axial coupling constant g_{A}
－summation over intermediate states
－to quench or not to quench ？$\left(\sigma \tau_{\text {eff．}}\right)$

Two neutrinos mode

The theoretical expression of the half－life of the 2ν mode can be written as：

$$
\left[T_{1 / 2}^{2 \nu}\right]^{-1}=G_{2 \nu}\left|M_{G T}^{2 \nu}\right|^{2}
$$

with

$$
M_{G T}^{2 \nu}=\sum_{m} \frac{\left\langle 0_{f}^{+}\left\|\vec{\sigma} t_{-}\right\| 1_{m}^{+}\right\rangle\left\langle 1_{m}^{+}\left\|\vec{\sigma} t_{-}\right\| 0_{i}^{+}\right\rangle}{E_{m}+E_{0}}
$$

－$G_{2 \nu}$ contains the phase space factors and the axial coupling constant g_{A}
－summation over intermediate states
－to quench or not to quench ？$\left(\sigma \tau_{\text {eff．}}\right)$
－does a good 2ν ME guarantee a good $0 \nu \mathrm{ME}$ ？

Lanczos Algorithm

In the first step we write：

$$
\mathcal{H}|\mathbf{1}\rangle=E_{11}|\mathbf{1}\rangle+E_{12}|\mathbf{2}\rangle
$$

there E_{11} is just $\langle\mathbf{1}| \mathcal{H}|\mathbf{1}\rangle\langle\mathcal{H}\rangle$ ，the mean value of \mathcal{H} ． In the second step：

$$
\mathcal{H}|\mathbf{2}\rangle=E_{21}|\mathbf{1}\rangle+E_{22}|\mathbf{2}\rangle+E_{23}|\mathbf{3}\rangle
$$

The hermiticity of \mathcal{H} implies $E_{21}=E_{12}$ ，E_{22} is just $\langle\mathbf{2}| \mathcal{H}|\mathbf{2}\rangle$ and E_{23} is obtained by normalization ：

$$
E_{23}|\mathbf{3}\rangle=\left(\mathcal{H}-E_{22}\right)|\mathbf{2}\rangle-E_{21}|\mathbf{1}\rangle
$$

At rank N ，the following relations hold：

Lanczos Algorithm

In the first step we write：

$$
\mathcal{H}|\mathbf{1}\rangle=E_{11}|\mathbf{1}\rangle+E_{12}|\mathbf{2}\rangle
$$

there E_{11} is just $\langle\mathbf{1}| \mathcal{H}|\mathbf{1}\rangle\langle\mathcal{H}\rangle$ ，the mean value of \mathcal{H} ． In the second step：

$$
\mathcal{H}|\mathbf{2}\rangle=E_{21}|\mathbf{1}\rangle+E_{22}|\mathbf{2}\rangle+E_{23}|\mathbf{3}\rangle
$$

The hermiticity of \mathcal{H} implies $E_{21}=E_{12}, E_{22}$ is just $\langle\mathbf{2}| \mathcal{H}|\mathbf{2}\rangle$ and E_{23} is obtained by normalization ：

$$
E_{23}|\mathbf{3}\rangle=\left(\mathcal{H}-E_{22}\right)|\mathbf{2}\rangle-E_{21}|\mathbf{1}\rangle
$$

At rank N ，the following relations hold：
$\mathcal{H}|\mathbf{N}\rangle=E_{\mathrm{NN}_{-1}}|\mathbf{N}-\mathbf{1}\rangle+E_{\mathrm{NN}}|\mathbf{N}\rangle+E_{\mathrm{NN}+1}|\mathbf{N}+\mathbf{1}\rangle$
$E_{N N-1}=E_{N-1 N}, E_{N N}=\langle N| \mathcal{H}|N\rangle$

Lanczos Algorithm

In the first step we write:

$$
\mathcal{H}|\mathbf{1}\rangle=E_{11}|\mathbf{1}\rangle+E_{12}|\mathbf{2}\rangle
$$

there E_{11} is just $\langle\mathbf{1}| \mathcal{H}|\mathbf{1}\rangle\langle\mathcal{H}\rangle$, the mean value of \mathcal{H}. In the second step:

$$
\mathcal{H}|\mathbf{2}\rangle=E_{21}|\mathbf{1}\rangle+E_{22}|\mathbf{2}\rangle+E_{23}|\mathbf{3}\rangle
$$

The hermiticity of \mathcal{H} implies $E_{21}=E_{12}, E_{22}$ is just $\langle\mathbf{2}| \mathcal{H}|\mathbf{2}\rangle$ and E_{23} is obtained by normalization :

$$
E_{23}|\mathbf{3}\rangle=\left(\mathcal{H}-E_{22}\right)|\mathbf{2}\rangle-E_{21}|\mathbf{1}\rangle
$$

At rank N , the following relations hold:
$\mathcal{H}|\mathbf{N}\rangle=E_{\mathrm{NN}-\mathbf{1}}|\mathbf{N}-\mathbf{1}\rangle+E_{\mathrm{NN}}|\mathbf{N}\rangle+E_{\mathrm{NN}+\mathbf{1}}|\mathbf{N}+\mathbf{1}\rangle$
$E_{\mathrm{NN}-\mathbf{1}}=E_{\mathrm{N}-\mathbf{1}}, E_{\mathrm{NN}}=\langle\mathbf{N}| \mathcal{H}|\mathbf{N}\rangle$

Lanczos Algorithm

In the first step we write:

$$
\mathcal{H}|\mathbf{1}\rangle=E_{11}|\mathbf{1}\rangle+E_{12}|\mathbf{2}\rangle
$$

there E_{11} is just $\langle\mathbf{1}| \mathcal{H}|\mathbf{1}\rangle\langle\mathcal{H}\rangle$, the mean value of \mathcal{H}. In the second step:

$$
\mathcal{H}|\mathbf{2}\rangle=E_{21}|\mathbf{1}\rangle+E_{22}|\mathbf{2}\rangle+E_{23}|\mathbf{3}\rangle
$$

The hermiticity of \mathcal{H} implies $E_{21}=E_{12}$, E_{22} is just $\langle\mathbf{2}| \mathcal{H}|\mathbf{2}\rangle$ and E_{23} is obtained by normalization :

$$
E_{23}|\mathbf{3}\rangle=\left(\mathcal{H}-E_{22}\right)|\mathbf{2}\rangle-E_{21}|\mathbf{1}\rangle
$$

At rank N , the following relations hold:
$\mathcal{H}|\mathbf{N}\rangle=E_{\mathrm{NN}-1}|\mathbf{N}-\mathbf{1}\rangle+E_{\mathrm{NN}}|\mathbf{N}\rangle+E_{\mathrm{NN}+1}|\mathbf{N}+\mathbf{1}\rangle$
$E_{\mathbf{N N}-\mathbf{1}}=E_{\mathbf{N}-\mathbf{1 N}}, E_{\mathbf{N N}}=\langle\mathbf{N}| \mathcal{H}|\mathbf{N}\rangle$
and $E_{\mathbf{N N}_{+1}}|\mathbf{N}+\mathbf{1}\rangle=\left(\mathcal{H}-E_{\mathrm{NN}}\right)|\mathbf{N}\rangle-E_{\mathrm{NN}-1}|\mathbf{N}-1\rangle$

Lanczos Algorithm

It is explicit that we have built a tridiagonal matrix

$$
\langle I| \mathcal{H}|J\rangle=\langle J| \mathcal{H}|I\rangle=0 \text { if }|I-J|>1
$$

$$
\left(\begin{array}{cccccc}
E_{11} & E_{12} & 0 & 0 & 0 & 0 \\
E_{12} & E_{22} & E_{23} & 0 & 0 & 0 \\
0 & E_{32} & E_{33} & E_{34} & 0 & 0 \\
0 & 0 & E_{43} & E_{44} & E_{45} & 0 \\
& & & & &
\end{array}\right)
$$

Lanczos Strength Function

Let Ω be an operator acting on some initial state $\left|\Phi_{\text {ini }}\right\rangle$, we obtain the state $\Omega\left|\Phi_{\text {ini }}\right\rangle$ whose norm is the sum rule of the operator Ω in the initial state:

$$
S=\| \Omega\left|\Phi_{i n i}\right\rangle \|=\sqrt{\left\langle\Phi_{i n i}\right| \Omega^{2}\left|\Phi_{i n i}\right\rangle}
$$

Depending on the nature of the operator Ω, the state $\Omega \mid \Phi_{\text {ini }}$) belongs to the same nucleus (if Ω is a e.m transition operator) or to another (Gamow-Teller, nucleon transfer, $a_{j}^{\dagger} / \tilde{a}_{j}, \beta \beta, \ldots$)

If the operator Ω does not commute with $\mathcal{H}, \Omega\left|\Phi_{\text {ini }}\right\rangle$ is not necessarily an eigenvector of the system, BUT it can be developped in energy eigenstates:
$\Omega\left|\Phi_{i n i}\right\rangle=\sum_{i} S\left(E_{i}\right)\left|E_{i}\right\rangle$ and $\left\langle\Phi_{i n i}\right| \Omega^{2}\left|\Phi_{i n i}\right\rangle=\sum_{i} S^{2}\left(E_{i}\right)$
where $S^{2}\left(E_{i}\right)$ is the strength function (or structure function)
$\left(S\left(E_{i}\right)=\left\langle E_{i}\right| \Omega\left|\Phi_{\text {ini }}\right\rangle\right)$

Lanczos Structure Function

If we carry on the Lanczos procedure
using $|\Sigma\rangle=\Omega\left|\Phi_{\text {ini }}\right\rangle$ as initial pivot.
then H is again diagonalized to obtain the eigenvalues $\left|E_{i}\right\rangle$
U is the unitary matrix that diagonalizes \mathcal{H} and gives the expression of the eigenvectors in terms of the Lanczos vectors:

$S\left(E_{i}\right)=U(1, i)$
How good is the Strength function obtained at iteration N compared to the exact one?

Lanczos Structure Function

Any distribution can be characterized by the moments of the distribution．

$$
\begin{aligned}
\bar{E} & \left.=\langle\Omega| \boldsymbol{H}|\Omega\rangle=\sum_{i} E_{i}\left|\left\langle E_{i}\right| \boldsymbol{\Omega}\right| \Phi_{i n i}\right\rangle\left.\right|^{2} \\
m_{n} & \left.=\langle\Omega|(\boldsymbol{H}-\bar{E})^{n}|\Omega\rangle=\sum_{i}\left(E_{i}-\bar{E}\right)^{n}\left|\left\langle E_{i}\right| \boldsymbol{\Omega}\right| \Phi_{i n i}\right\rangle\left.\right|^{2}
\end{aligned}
$$

Gaussian distribution characterized by two moments（ $\bar{E}, \sigma^{2}=m_{2}$ ）
$g(E)=\frac{1}{\sigma \sqrt{2 \pi}} \exp \left(-\frac{(E-\bar{E})^{2}}{2 \sigma^{2}}\right)$

Lanczos Structure Function

Lanczos method provides a natural way of determining the basis $|\alpha\rangle$.

Initial vector $|1\rangle=\frac{|\Omega\rangle}{\sqrt{\langle\Omega \mid \Omega\rangle}}$.

$$
\begin{aligned}
& E_{12}|\mathbf{2}\rangle=\left(\boldsymbol{H}-E_{11}\right)|\mathbf{1}\rangle \\
& E_{22}|\mathbf{3}\rangle=\left(\boldsymbol{H}-E_{22}\right)|\mathbf{2}\rangle-E_{12}|\mathbf{1}\rangle \\
& \ldots \\
& E_{N N+1}|\mathbf{N}+\mathbf{1}\rangle=\left(\boldsymbol{H}-E_{N N}\right)|\mathbf{N}\rangle \\
& \quad-E_{N-1 N}|\mathbf{N}-\mathbf{1}\rangle
\end{aligned}
$$

where

$$
E_{N N}=\langle\mathbf{N}| \boldsymbol{H}|\mathbf{N}\rangle, \quad E_{N N+1}=E_{N+1 N}
$$

Each Lanczos iteration gives information about two new moments of the distribution.

$$
\begin{aligned}
& E_{11}=\langle\mathbf{1}| \boldsymbol{H}|\mathbf{1}\rangle=\bar{E} \\
& E_{12}^{2}=\langle\Omega|\left(\boldsymbol{H}-E_{11}\right)^{2}|\Omega\rangle=m_{2} \\
& E_{22}=\frac{m_{3}}{m_{2}}+\bar{E} \\
& E_{23}^{2}=\frac{m_{4}}{m_{2}}-\frac{m_{3}^{2}}{m_{2}^{2}}-m_{2}
\end{aligned}
$$

Diagonalizing Lanczos matrix after N iterations gives an approximation to the distribution with the same lowest 2 N moments.

Evolution of Strength Distribution

GT Strength on ${ }^{48}$ Sc

s 0

Evolution of Strength Distribution

GT Strength on ${ }^{48} \mathrm{Sc}$

s 0 0000 － 000

Evolution of Strength Distribution

GT Strength on ${ }^{48} \mathrm{Sc}$

s 02

Evolution of Strength Distribution

GT Strength on ${ }^{48}$ Sc

s 0

Evolution of Strength Distribution

GT Strength on ${ }^{48}$ Sc

s 0

Evolution of Strength Distribution

GT Strength on ${ }^{48}$ Sc

Evolution of Strength Distribution

Evolution of Strength Distribution

GT Strength on ${ }^{48} \mathrm{Sc}$

Evolution of Strength Distribution

GT Strength on ${ }^{48} \mathrm{Sc}$

${ }^{48} \mathrm{Ca}(\mathrm{p}, \mathrm{n})^{48} \mathrm{Sc}$ Strength Function

${ }^{48} \mathrm{Ca}(\mathrm{p}, \mathrm{n})^{48} \mathrm{Sc}$ Strength Function

Quenching of GT strength in the pf－shell

Quenching of GT operator

$$
\begin{aligned}
& |\hat{i}\rangle=\alpha|0 \hbar \omega\rangle+\sum_{n \neq 0} \beta_{n}|n \hbar \omega\rangle, \\
& |\hat{f}\rangle=\alpha^{\prime}|0 \hbar \omega\rangle+\sum_{n \neq 0} \beta_{n}^{\prime}|n \hbar \omega\rangle
\end{aligned}
$$

then

$$
\langle\hat{f}\|\mathcal{T}\| \hat{i}\rangle^{2}=\left(\alpha \alpha^{\prime} T_{0}+\sum_{n \neq 0} \beta_{n} \beta_{n}^{\prime} T_{n}\right)^{2}
$$

－$n \neq 0$ contributions negligible
－$\alpha \approx \alpha^{\prime}$
$\overrightarrow{\text { space is } Q \approx \alpha^{2}}$ projection of the physical wavefunction in the $0 \hbar \omega$
transition quenched by Q^{2}

$(\beta \beta)_{2 \nu}$ structure function

$$
M_{G T}^{2 \nu}=\sum_{m} \frac{\left\langle 0_{f}^{+}\left\|\vec{\sigma} t_{-}\right\| 1_{m}^{+}\right\rangle\left\langle 1_{m}^{+}\left\|\vec{\sigma} t_{-}\right\| 0_{i}^{+}\right\rangle}{E_{m}+E_{0}}
$$

$(\beta \beta)_{2 \nu}$ structure function

$$
M_{G T}^{2 \nu}=\sum_{m} \frac{\left\langle 0_{f}^{+}\left\|\vec{\sigma} t_{-}\right\| 1_{m}^{+}\right\rangle\left\langle1 _ { m } ^ { + } \left\|\left|\vec{\sigma} t_{-} \| 0_{i}^{+}\right\rangle\right.\right.}{E_{m}+E_{0}}
$$

Calculation in three steps：
－calculate the final and initial states

$(\beta \beta)_{2 \nu}$ structure function

$$
M_{G T}^{2 \nu}=\sum_{m} \frac{\left\langle 0_{f}^{+}\left\|\vec{\sigma} t_{-}\right\| 1_{m}^{+}\right\rangle\left\langle 1_{m}^{+}\left\|\vec{\sigma} t_{-}\right\| 0_{i}^{+}\right\rangle}{E_{m}+E_{0}}
$$

Calculation in three steps:

- calculate the final and initial states

$(\beta \beta)_{2 \nu}$ structure function

$$
M_{G T}^{2 \nu}=\sum_{m} \frac{\left\langle 0_{f}^{+}\left\|\vec{\sigma} t_{-}\right\| 1_{m}^{+}\right\rangle\left\langle 1_{m}^{+}\left\|\vec{\sigma} t_{-}\right\| 0_{i}^{+}\right\rangle}{E_{m}+E_{0}}
$$

Calculation in three steps：
－calculate the final and initial states
－generate the doorway states $\vec{\sigma} t_{-}\left|0_{i}^{+}\right\rangle$and $\vec{\sigma} t_{+}\left|0_{f}^{+}\right\rangle$
2ν calculations
0ν calculations

$(\beta \beta)_{2 \nu}$ structure function

$$
M_{G T}^{2 \nu}=\sum_{m} \frac{\left\langle 0_{f}^{+}\left\|\vec{\sigma} t_{-}\right\| 1_{m}^{+}\right\rangle\left\langle 1_{m}^{+}\left\|\vec{\sigma} t_{-}\right\| 0_{i}^{+}\right\rangle}{E_{m}+E_{0}}
$$

Calculation in three steps：
－calculate the final and initial states
－generate the doorway states $\vec{\sigma} t_{-}\left|0_{i}^{+}\right\rangle$and $\vec{\sigma} t_{+}\left|0_{f}^{+}\right\rangle$
－take a doorway and use of Lanczos Strength Function method：

$(\beta \beta)_{2 \nu}$ structure function

$$
M_{G T}^{2 \nu}=\sum_{m} \frac{\left\langle 0_{f}^{+}\left\|\vec{\sigma} t_{-}\right\| 1_{m}^{+}\right\rangle\left\langle 1_{m}^{+}\left\|\vec{\sigma} t_{-}\right\| 0_{i}^{+}\right\rangle}{E_{m}+E_{0}}
$$

Calculation in three steps：
－calculate the final and initial states
－generate the doorway states $\vec{\sigma} t_{-}\left|0_{i}^{+}\right\rangle$and $\vec{\sigma} t_{+}\left|0_{f}^{+}\right\rangle$
－take a doorway and use of Lanczos Strength Function method：
－at iteration $\mathrm{N}, \mathrm{N}_{1+}$ states in the intermediate nucleus，with excita－ tion energies E_{m}

$(\beta \beta)_{2 \nu}$ structure function

$$
M_{G T}^{2 \nu}=\sum_{m} \frac{\left\langle 0_{f}^{+}\left\|\vec{\sigma} t_{-}\right\| 1_{m}^{+}\right\rangle\left\langle 1_{m}^{+}\left\|\vec{\sigma} t_{-}\right\| 0_{i}^{+}\right\rangle}{E_{m}+E_{0}}
$$

Calculation in three steps:

- calculate the final and initial states
- generate the doorway states $\vec{\sigma} t_{-}\left|0_{i}^{+}\right\rangle$and $\vec{\sigma} t_{+}\left|0_{f}^{+}\right\rangle$
- take a doorway and use of Lanczos Strength Function method:
- at iteration $\mathrm{N}, \mathrm{N}_{1+}$ states in the intermediate nucleus, with excitation energies E_{m}
- overlap with the other doorway, enter energy denominators and add up the N contributions

2ν half－lifes

2ν strength function in ${ }^{48} \mathrm{Ca},{ }^{130} \mathrm{Te}$ and ${ }^{136} \mathrm{Xe}$

Parent nuclei	${ }^{48} \mathrm{Ca}$	${ }^{76} \mathrm{Ge}$	${ }^{82} \mathrm{Se}$	${ }^{130} \mathrm{Te}$	${ }^{136} \mathrm{Xe}$
$T_{1 / 2}^{2 \nu}$（g．s．）th．	$3.7 E 19$	$1.15 E 21$	$3.4 E 19$	$4 E 20$	$6 E 20$
$T_{1 / 2}^{2 \nu}$（g．s．） \exp	$4.2 E 19$	$1.4 E 21$	$8.3 E 19$	$2.7 E 21$	$>8.1 E 20$

2ν half－lifes

2ν strength function in ${ }^{48} \mathrm{Ca},{ }^{130} \mathrm{Te}$ and ${ }^{136} \mathrm{Xe}$

Parent nuclei	${ }^{48} \mathrm{Ca}$	${ }^{76} \mathrm{Ge}$	${ }^{82} \mathrm{Se}$	${ }^{130} \mathrm{Te}$	${ }^{136} \mathrm{Xe}$
$T_{1 / 2}^{2 \nu}$（g．s．）th．	$3.7 E 19$	$1.15 E 21$	$3.4 E 19$	$4 E 20$	$6 E 20$
$T_{1 / 2}^{2 \nu}$（g．s．） \exp	$4.2 E 19$	$1.4 E 21$	$8.3 E 19$	$2.7 E 21$	$>8.1 E 20$

2ν half－lifes

2ν strength function in ${ }^{48} \mathrm{Ca},{ }^{130} \mathrm{Te}$ and ${ }^{136} \mathrm{Xe}$

Parent nuclei	${ }^{48} \mathrm{Ca}$	${ }^{76} \mathrm{Ge}$	${ }^{82} \mathrm{Se}$	${ }^{130} \mathrm{Te}$	${ }^{136} \mathrm{Xe}$
$T_{1 / 2}^{2 \nu}$（g．s．）th．	$3.7 E 19$	$1.15 E 21$	$3.4 E 19$	$4 E 20$	$6 E 20$
$T_{1 / 2}^{2 \nu}$（g．s．）exp	$4.2 E 19$	$1.4 E 21$	$8.3 E 19$	$2.7 E 21$	$>8.1 E 20$

Neutrinoless mode：

Exchange of a light neutrino，only left－handed currents

The theoretical expression of the half－life of the 0ν mode can be written as：

$$
\left[T_{1 / 2}^{0 \nu}\left(0^{+} \rightarrow 0^{+}\right)\right]^{-1}=G_{0 \nu}\left|M^{0 \nu}\right|^{2}\left\langle m_{\nu}\right\rangle^{2}
$$

Neutrinoless mode：

CLOSURE APPROXIMATION then

$$
\left\langle\Psi_{f}\left\|\mathcal{O}^{(K)}\right\| \Psi_{i}\right\rangle \quad \text { with } \quad \mathcal{O}^{(K)}=\sum_{i j k l} W_{i j k l}^{\lambda, K}\left[\left(a_{i}^{\dagger} a_{j}^{\dagger}\right)^{\lambda}\left(\tilde{a}_{k} \tilde{a}_{l}\right)^{\lambda}\right]^{K}
$$

0ν calculations \qquad

Neutrinoless mode：

CLOSURE APPROXIMATION then

$$
\begin{gathered}
\left\langle\Psi_{f}\left\|\mathcal{O}^{(K)}\right\| \Psi_{i}\right\rangle \quad \text { with } \quad \mathcal{O}^{(K)}=\sum_{i j k l}\left(W_{i j k l}^{\lambda, K}\left[\left(a_{i}^{\dagger} a_{j}^{\dagger}\right)^{\lambda}\left(\tilde{a}_{k} \tilde{a}_{l}\right)^{\lambda}\right]^{K}\right. \\
\text { two-body operator }
\end{gathered}
$$

We are left with a＂standard＂nuclear structure problem

Neutrinoless mode：

CLOSURE APPROXIMATION then

$$
\left\langle\Psi_{f}\left\|\mathcal{O}^{(K)}\right\| \Psi_{i}\right\rangle \quad \text { with } \quad \mathcal{O}^{(K)}=\sum_{\text {two-body operator }}^{\sum_{i j k l}^{\lambda, K}}\left[\left(a_{i}^{\dagger} a_{j}^{\dagger}\right)^{\lambda}\left(\tilde{a}_{k} \tilde{a}_{l}\right)^{\lambda}\right]^{K}
$$

We are left with a＂standard＂nuclear structure problem

$$
\begin{aligned}
M_{(0 \nu)}=M_{G T}^{(0 \nu)}-\frac{g_{\nu}^{2}}{g_{A}^{2}} M_{F}^{(0 \nu)}= & \left\langle 0_{f}^{+}\right| \sum_{n, m} h\left(\sigma_{n} . \sigma_{m}\right) t_{n-} t_{m-}\left|0_{i}^{+}\right\rangle \\
-\frac{g_{\nu}^{2}}{g_{A}^{2}} & \left\langle 0_{f}^{+}\right| \sum_{n, m} h t_{n-} t_{m-}\left|0_{i}^{+}\right\rangle
\end{aligned}
$$

Update of 0ν results

$\left\langle m_{\nu}\right\rangle$ for $\mathrm{T}_{\frac{1}{2}}=10^{25} \mathrm{y}$.	$\mathrm{M}_{0 \nu}^{G T}$	$1-\chi_{F}$	
${ }^{48} \mathrm{Ca}$	0.85	0.67	1.14
${ }^{76} \mathrm{Ge}$	0.90	2.35	1.10
${ }^{82} \mathrm{Se}$	0.42	2.35	1.10
${ }^{96} \mathrm{Zr}$			
${ }^{100} \mathrm{Mo}$			
${ }^{110} \mathrm{Pd}$	0.67	2.52	1.16
${ }^{166} \mathrm{Cd}$	0.24	2.59	1.19
${ }^{124} \mathrm{Sn}$	0.45	2.11	1.13
${ }^{128} \mathrm{Te}$	1.92	2.36	1.13
${ }^{130} \mathrm{Te}$	0.35	2.13	1.13
${ }^{136} \mathrm{Xe}$	0.41	1.77	1.13
${ }^{150} \mathrm{Nd}$	hopeless	for	$\mathrm{SM}!$

Dependance on the effective interaction

The results depend only weakly on the effective interactions provided they are compatible with the spectroscopy of the region．
For the lower pf shell we have three interactions that work properly， KB3，FPD6 and GXPF1．Their predictions for the 2ν and the neutrinoless modes are quite close to each other

KB3 FPD6 GXPF1

$$
\begin{array}{llll}
\mathrm{M}_{G T}(2 \nu) & 0.083 & 0.104 & 0.107 \\
\mathrm{M}_{G T}(0 \nu) & 0.667 & 0.726 & 0.621 \\
\hline
\end{array}
$$

Similarly，in the $r 3 g$ and $r 4 h$ spaces，the variations among the predictions of spectroscopically tested interactions is small（10－20\％）

Influence of deformation

Changing adequately the effective interaction we can increase or decrease the deformation of parent，grand－daughter or both，and so gauge its effect on the decays． A mismatch of deformation can reduce the $\beta \beta$ matrix elements by factors 2－3．In fact the fictitious decay Ti－Cr，using the same energetics that in $\mathrm{Ca}-\mathrm{Ti}$ ，has matrix elements more than twice larger．If we increase the deformation in both Ti and Cr nothing happens．On the contrary，if we reduce the deformation of Ti，the matrix elements are severely quenched．The effect of deformation is therefore quite important and cannot be overlooked

	${ }^{48} \mathrm{Ca} \rightarrow{ }^{48} \mathrm{Ti}$	${ }^{48} \mathrm{Ti} \rightarrow{ }^{48} \mathrm{Cr}$
$\mathrm{M}_{G T}(2 \nu)$	0.083	0.213
$\mathrm{M}_{G T}(0 \nu)$	0.667	1.298

Influence of the spin-orbit partner

Similarly, we can increase artificially the excitation energy of the spin-orbit partner of the intruder orbit. Surprisingly enough, this affects very little the values of the matrix elements, particularly in the neutrinoless case. Even removing the spin-orbit partner completely produces minor changes

$\beta \beta$ decay

J components（particle－particle representation）

Summary I

－Large scale shell model calculations with high quality effective interactions are available or will be in the immediate future for all but one of the neutrinoless double beta emitters
－The theoretical spread of the values of the nuclear matrix elements entering in the lifetime calculations is greatly reduced if the ingredients of each calculation are examined critically and only those fulfilling a set of quality criteria are retained
－A concerted effort of benchmarking between LSSM and QRPA practitioners would be of utmost importance to increase the reliability and precision of the nuclear structure input for the double beta decay processes

Summary II

－The most favorable case appears when both nuclei（emitter and daugther）are spherical（superfluid）
not far from semi－magic：

$$
{ }^{82} \mathrm{Se},{ }^{116} \mathrm{Cd},{ }^{124} \mathrm{Sn},{ }^{130} \mathrm{Te},{ }^{136} \mathrm{Xe}
$$

－With the present work，${ }^{116} \mathrm{Cd}$ is the best case BUT ．．．
－uncertainties with the interaction
－what happens when we enlarge the valence space ？
－region of ${ }^{96} \mathrm{Zr} /{ }^{100} \mathrm{Mo}$ remains to be studied more carefully

$(\beta \beta)_{0_{\nu}}$ matrix elements

$$
\begin{array}{rlrl}
M_{G T}^{(0 \nu)} & =\left\langle 0_{f}^{+}\left\|\sum_{n, m} h\left(\sigma_{n} \cdot \sigma_{m}\right) t_{n-} t_{m-}\right\| 0_{i}^{+}\right\rangle, & \chi_{F}=\left\langle 0_{f}^{+}\left\|\sum_{n, m} h t_{n-} t_{m-}\right\| 0_{i}^{+}\right\rangle\left(\frac{g_{V}}{g_{A}}\right)^{2} / M_{G T}^{(0 \nu)}, \\
\chi_{G T}^{\prime} & =\left\langle 0_{f}^{+}\left\|\sum_{n, m} h^{\prime}\left(\sigma_{n} \cdot \sigma_{m}\right) t_{n-} t_{m-}\right\| 0_{i}^{+}\right\rangle / M_{G T}^{(0 \nu)}, & \chi_{F}^{\prime}=\left\langle 0_{f}^{+}\left\|\sum_{n, m} h^{\prime} t_{n-} t_{m-}\right\| 0_{i}^{+}\right\rangle\left(\frac{g_{V}}{g_{A}}\right)^{2} / M_{G T}^{(0 \nu)}, \\
\chi_{G T}^{\omega} & =\left\langle 0_{f}^{+}\left\|\sum_{n, m} h_{\omega}\left(\sigma_{n} \cdot \sigma_{m}\right) t_{n-} t_{m-}\right\| 0_{i}^{+}\right\rangle / M_{G T}^{(0 \nu)}, & \chi_{F}^{\omega}=\left\langle 0_{f}^{+}\left\|\sum_{n, m} h_{\omega} t_{n-} t_{m-}\right\| 0_{i}^{+}\right\rangle\left(\frac{g_{V}}{g_{A}}\right)^{2} / M_{G T}^{(0 \nu)}, \\
\chi_{T} & =\left\langle 0_{f}^{+}\left\|\sum_{n, m} h^{\prime}\left[\left(\sigma_{n} \cdot \hat{r}_{n, m}\right)\left(\sigma_{m} \cdot \hat{r}_{n, m}\right)-\frac{1}{3} \sigma_{n} \cdot \sigma_{m}\right] t_{n-} t_{m-}\right\| 0_{i}^{+}\right\rangle / M_{G T}^{(0 \nu)}, \\
\chi_{P} & =\left\langle 0_{f}^{+}\left\|i \sum_{n, m} h^{\prime}\left(\frac{r_{+n, m}}{2 r_{n, m}}\right)\left[\left(\sigma_{n}-\sigma_{m}\right) \cdot\left(\hat{r}_{n, m} \times \hat{r}_{+n, m}\right)\right] t_{n-} t_{m-}\right\| 0_{i}^{+}\right\rangle \frac{g_{V}}{g_{A}} / M_{G T}^{(0 \nu)}, \\
\chi_{R} & =\frac{1}{6}\left(g_{-\frac{1}{2}}^{s}-g_{\frac{1}{2}}^{s}\right)\left\langle 0_{f}^{+}\left\|\sum_{n, m} h_{R}\left(\sigma_{n} \cdot \sigma_{m}\right) t_{n-} t_{m-}\right\| 0_{i}^{+}\right\rangle \frac{g_{V}}{g_{A}} / M_{G T}^{(0 \nu)} .
\end{array}
$$

$(\beta \beta)_{0 \nu}$ matrix elements

$$
\begin{aligned}
h(r,\langle\mu\rangle) & =\frac{R_{0}}{r} \phi\left(\langle\mu\rangle m_{e} r\right), \\
h^{\prime}(r,\langle\mu\rangle) & =h+\langle\mu\rangle m_{e} R_{0} h_{0}(\langle\mu\rangle r), \\
h_{\omega}(r,\langle\mu\rangle) & =h-\langle\mu\rangle m_{e} R_{0} h_{0}(\langle\mu\rangle r), \\
h_{R}(r,\langle\mu\rangle) & =-\frac{\langle\mu\rangle m_{e}}{M_{i}}\left(\frac{2}{\pi}\left(\frac{R_{0}}{r}\right)^{2}-\langle\mu\rangle m_{e} R_{0} h\right)+\frac{4 \pi R_{0}^{2}}{M_{p}} \delta(r), \\
h_{0}(x) & =-\frac{d \phi}{d x}(x), \\
\phi(x) & =\frac{2}{\pi}\left[\sin (x) C_{\text {int }}(x)-\cos (x) S_{\text {int }}(x)\right], \\
\frac{d \phi}{d x} & =\frac{2}{\pi}\left[\sin (x) C_{\text {int }}(x)+\cos (x) S_{\text {int }}(x)\right] .
\end{aligned}
$$

$S_{\text {int }}(x)$ and $C_{\text {int }}(x)$ being the integral sinus and cosinus functions，

$$
S_{\text {int }}(x)=-\int_{x}^{\infty} \frac{\sin (\zeta)}{\zeta} d \zeta, \quad C_{\text {int }}(x)=-\int_{x}^{\infty} \frac{\cos (\zeta)}{\zeta} d \zeta
$$

