Outline	$\beta \beta$ decay	shell model	Structure Function	Gamow-Teller SF	Quenching	2ν calculations	0ν calculations	0ν results	summary	ap
0	0	000000	0000	0000	00	00	00	00000	00	0

$\beta\beta$ decay and nuclear structure

F. Nowacki¹

XIII Nuclear Physics Workshop Kazimierz Dolny September 27-October 1, 2006

¹Strasbourg-Madrid Shell-Model collaboration; OF : ($< \square > < \square > < \square > < \square > < = > < = >$

Outline	$\beta \beta$ decay	shell model	Structure Function	Gamow-Teller SF	Quenching	2v calculations	0ν calculations	0ν results	summary	ар
•	0	000000	0000	0000	00	00	00	00000	00	0

Outline

- $\beta\beta$ decay
- Shell model
- ► 2*v* calculations
- 0v calculations
- summary

powered by LAT_EX ・ロ ・ ・ 合 ・ く 言 ・ く 言 ・ う へ (や

Outline	ββ decay	shell model	Structure Function	Gamow-Teller SF	Quenching	2v calculations	0ν calculations	0ν results	summary	ap
0	•	000000	0000	0000	00	00	00	00000	00	0

$\beta\beta$ decay

Transition	${\sf Q}_{\beta\beta}$ (keV)	Ab. $(^{232}Th = 100)$
110 Pd \rightarrow 110 Cd	2013	12
$^{76}\text{Ge} ightarrow ^{76}$ Se	2040	8
124 Sn \rightarrow 124 Te	2288	6
136 Xe \rightarrow 136 Ba	2479	9
130 Te $ ightarrow$ 130 Xe	2533	34
$^{116}Cd \rightarrow ^{116}Sn$	2802	7
82 Se $ ightarrow$ ⁸² Kr	2995	9
$^{100}Mo \rightarrow ^{100}Ru$	3034	10
$^{96}Zr \rightarrow ^{96}Mo$	3350	3
$^{150}Nd \rightarrow ^{150}Sm$	3667	6
48 Ca \rightarrow 48 Ti	4271	0.2

powered by LATEX ₹

Outline	$\beta \beta$ decay	shell model	Structure Function	Gamow-Teller SF	Quenching	2v calculations	0ν calculations	0ν results	summary	a
0	•	000000	0000	0000	00	00	00	00000	00	0

$\beta\beta$ decay

Transition	$Q_{\beta\beta}$ (keV)	Ab. $(^{232}Th = 100)$	1
Iransition 110 Pd → 110 Cd 76 Ge → 76 Se 124 Sn → 124 Te 136 Xe → 136 Ba 130 Te → 130 Xe 116 Cd → 116 Sn 82 Se → 82 Kr 100 Mo → 100 Ru 96 Zr → 96 Mo 150 Ndc → 150 Sm	$Q_{\beta \beta}$ (keV) 2013 2040 2288 2479 2533 2802 2995 3034 3350 2667	Ab. $(-527 n = 100)$ 12 8 6 9 34 7 9 10 3 6	Arbitrary scale
$^{48}Ca \rightarrow ^{48}Ti$	4271	0.2	0

€

Outline	$\beta \beta$ decay	shell model	Structure Function	Gamow-Teller SF	Quenching	2v calculations	0ν calculations	0ν results	summary	ap
0	0	●00000	0000	0000	00	00	00	00000	00	0

Define a valence space

Derive an effective interaction

 $\mathcal{H}\Psi = E\Psi
ightarrow \mathcal{H}_{ ext{eff}}\Psi_{ ext{eff}} = E\Psi_{ ext{eff}}$

JOG CP

 Build and diagonalize the Hamiltonian matrix.

Outline	$\beta \beta$ decay	shell model	Structure Function	Gamow-Teller SF	Quenching	2v calculations	0ν calculations	0ν results	summary	ap
0	0	•00000	0000	0000	00	00	00	00000	00	0

- Define a valence space
- Derive an effective interaction

 $\mathcal{H}\Psi = E\Psi
ightarrow \mathcal{H}_{\text{eff}}\Psi_{\text{eff}} = E\Psi_{\text{eff}}$

Jac.

 Build and diagonalize the Hamiltonian matrix.

Outline	$\beta \beta$ decay	shell model	Structure Function	Gamow-Teller SF	Quenching	2v calculations	0ν calculations	0ν results	summary	ap
0	0	•00000	0000	0000	00	00	00	00000	00	0

- Define a valence space
- Derive an effective interaction

 $\mathcal{H}\Psi = E\Psi \rightarrow \mathcal{H}_{\text{eff}}\Psi_{\text{eff}} = E\Psi_{\text{eff}}$

Jac.

 Build and diagonalize the Hamiltonian matrix.

Outline (ββ decay	shell model	Structure Function	Gamow-Teller SF	Quenching	2v calculations	0ν calculations	0ν results	summary	ap
0 0	0	•00000	0000	0000	00	00	00	00000	00	0

- Define a valence space
- Derive an effective interaction

 $\mathcal{H}\Psi = E\Psi
ightarrow \mathcal{H}_{\text{eff}}\Psi_{\text{eff}} = E\Psi_{\text{eff}}$

 Build and diagonalize the Hamiltonian matrix.

- Hilbert space • hamiltonian: $\mathcal{H}\Psi = E\Psi$
 - transition operator: $\langle \Psi | \mathcal{O} | \Psi \rangle$

Valence space
 H_{eff}, Ψ_{eff} = EΨ_{eff}
 ⟨Ψ_{eff}, |O_{eff}, |Ψ_{eff}, ⟩

G matrix: M. Hjorth-Jensen, T.T.S. Kuo and E. Osnes, Realistic effective interactions for nuclear systems, Physics Reports 261 (1995) 125-270

need some phenomenology from experimental data:

energies of states of (semi) magic nuclei

systematics of B(E2) transitions
 effective charge
 GT transitions
 quenching factor

powered by LAT_EX

need some phenomenology from experimental data:

energies of states of (semi) magic nuclei

powered by LAT_EX ののの ヨーシー (日) (日)

Specificity of $(\beta\beta)_{0\nu}$:

NO EXPERIMENTAL DATA !!!

prediction for m_{ν} very difficult easier for $m_{\nu}(A)/m_{\nu}(A')$

What is the best isotope to observe $(\beta\beta)_{0\nu}$ decay ?

What is the influence of the structure of the nucleus on $(\beta\beta)_{0\nu}$ matrix elements ?

Specificity of $(\beta\beta)_{0\nu}$:

NO EXPERIMENTAL DATA !!!

prediction for m_{ν} very difficult easier for $m_{\nu}(A)/m_{\nu}(A')$

What is the best isotope to observe $(\beta\beta)_{0\nu}$ decay ?

What is the influence of the structure of the nucleus on $(\beta\beta)_{0\nu}$ matrix elements ?

powered by LATEX 《마》《문》《문》 문 · 이익인

Specificity of $(\beta\beta)_{0\nu}$:

NO EXPERIMENTAL DATA !!!

prediction for m_{ν} very difficult easier for $m_{\nu}(A)/m_{\nu}(A')$

What is the best isotope to observe $(\beta\beta)_{0\nu}$ decay ?

What is the influence of the structure of the nucleus on $(\beta\beta)_{0\nu}$ matrix elements ?

powered by LATEX ヘロト くむト くま くま う き のへの

Two neutrinos mode

The theoretical expression of the half-life of the 2ν mode can be written as:

$$[T_{1/2}^{2\nu}]^{-1} = G_{2\nu} |M_{GT}^{2\nu}|^2,$$

with

$$M_{GT}^{2\nu} = \sum_{m} \frac{\langle \mathbf{0}_{f}^{+} || \vec{\sigma} t_{-} || \mathbf{1}_{m}^{+} \rangle \langle \mathbf{1}_{m}^{+} || \vec{\sigma} t_{-} || \mathbf{0}_{i}^{+} \rangle}{E_{m} + E_{0}}$$

► G_{2ν} contains the phase space factors and the axial coupling constant g_A

- summation over intermediate states
- to quench or not to quench ? ($\sigma \tau_{eff.}$)
- does a good 2ν ME guarantee a good 0ν ME ?

powered by LAT_EX

Two neutrinos mode

The theoretical expression of the half-life of the 2ν mode can be written as:

$$[T_{1/2}^{2\nu}]^{-1} = G_{2\nu} |M_{GT}^{2\nu}|^2,$$

with

$$M_{GT}^{2\nu} = \sum_{m} \frac{\langle 0_{f}^{+} ||\vec{\sigma} t_{-}|| 1_{m}^{+} \rangle \langle 1_{m}^{+} ||\vec{\sigma} t_{-}|| 0_{i}^{+} \rangle}{E_{m} + E_{0}}$$

- ► G_{2ν} contains the phase space factors and the axial coupling constant g_A
- summation over intermediate states
- to quench or not to quench ? ($\sigma \tau_{eff.}$)
- does a good 2ν ME guarantee a good 0ν ME ?

powered by LAT_EX ・ロ ・ < 昂 ・ < 言 ・ ミ ・ う へ の ・

Two neutrinos mode

The theoretical expression of the half-life of the 2ν mode can be written as:

$$[T_{1/2}^{2\nu}]^{-1} = G_{2\nu} |M_{GT}^{2\nu}|^2,$$

with

$$M_{GT}^{2\nu} = \sum_{m} \frac{\langle \mathbf{0}_{f}^{+} || \vec{\sigma} t_{-} || \mathbf{1}_{m}^{+} \rangle \langle \mathbf{1}_{m}^{+} || \vec{\sigma} t_{-} || \mathbf{0}_{i}^{+} \rangle}{E_{m} + E_{0}}$$

- ► G_{2ν} contains the phase space factors and the axial coupling constant g_A
- summation over intermediate states
- to quench or not to quench ? ($\sigma \tau_{eff.}$)
- does a good 2ν ME guarantee a good 0ν ME ?

powered by LAT_EX ののの ヨーシー (日) (日) Outline $\beta \beta$ decayshell modelStructure FunctionGamow-Teller SFQuenching 2ν calculations 0ν calculations 0ν resultssummaryap0000000000000000000000000

Two neutrinos mode

The theoretical expression of the half-life of the 2ν mode can be written as:

$$[T_{1/2}^{2\nu}]^{-1} = G_{2\nu} |M_{GT}^{2\nu}|^2,$$

with

$$M_{GT}^{2\nu} = \sum_{m} \frac{\langle 0_{f}^{+} ||\vec{\sigma} t_{-}|| 1_{m}^{+} \rangle \langle 1_{m}^{+} ||\vec{\sigma} t_{-}|| 0_{i}^{+} \rangle}{E_{m} + E_{0}}$$

► G_{2ν} contains the phase space factors and the axial coupling constant g_A

<ロ> < 同> < 同> < 三> < 三> < 三> ショー の Q (や

- summation over intermediate states
- to quench or not to quench ? ($\sigma \tau_{\text{eff.}}$)
- does a good 2ν ME guarantee a good 0ν ME ?

Outline	$\beta \beta$ decay	shell model	Structure Function	Gamow-Teller SF	Quenching	2v calculations	0ν calculations	0ν results	summary	ap
0	0	000000	0000	0000	00	00	00	00000	00	0

In the first step we write:

 $\mathcal{H} \left| \mathbf{1} \right\rangle = E_{11} \left| \mathbf{1} \right\rangle + E_{12} \left| \mathbf{2} \right\rangle$

there E_{11} is just $\langle 1|\mathcal{H}|1\rangle \langle \mathcal{H}\rangle$, the mean value of \mathcal{H} . In the second step:

 $\mathcal{H}|\mathbf{2}\rangle = E_{21}|\mathbf{1}\rangle + E_{22}|\mathbf{2}\rangle + E_{23}|\mathbf{3}\rangle$

The hermiticity of \mathcal{H} implies $E_{21} = E_{12}$, E_{22} is just $\langle \mathbf{2} | \mathcal{H} | \mathbf{2} \rangle$ and E_{23} is obtained by normalization :

$$E_{23}|\mathbf{3}\rangle = (\mathcal{H} - E_{22})|\mathbf{2}\rangle - E_{21}|\mathbf{1}\rangle$$

At rank N, the following relations hold:

$$|\mathcal{H}|N\rangle = E_{NN-1}|N-1\rangle + E_{NN}|N\rangle + E_{NN+1}|N+1\rangle$$

 $E_{\rm NN-1} = E_{\rm N-1N}, E_{\rm NN} = \langle N | \mathcal{H} | N \rangle$

and $E_{NN+1}|N+1\rangle = (\mathcal{H} - E_{NN})|N\rangle - E_{NN-1}|N-1\rangle$

powered by LAT_EX

Outline	$\beta \beta$ decay	shell model	Structure Function	Gamow-Teller SF	Quenching	2v calculations	0ν calculations	0ν results	summary	ap
0	0	000000	0000	0000	00	00	00	00000	00	0

In the first step we write:

 $\mathcal{H} \left| \mathbf{1} \right\rangle = E_{11} \left| \mathbf{1} \right\rangle + E_{12} \left| \mathbf{2} \right\rangle$

there E_{11} is just $\langle \mathbf{1} | \mathcal{H} | \mathbf{1} \rangle \langle \mathcal{H} \rangle$, the mean value of \mathcal{H} . In the second step:

 $\mathcal{H}|\mathbf{2}\rangle = E_{21}|\mathbf{1}\rangle + E_{22}|\mathbf{2}\rangle + E_{23}|\mathbf{3}\rangle$

The hermiticity of \mathcal{H} implies $E_{21} = E_{12}$, E_{22} is just $\langle \mathbf{2} | \mathcal{H} | \mathbf{2} \rangle$ and E_{23} is obtained by normalization :

$$E_{23}|\mathbf{3}\rangle = (\mathcal{H} - E_{22})|\mathbf{2}\rangle - E_{21}|\mathbf{1}\rangle$$

At rank N, the following relations hold:

 $\mathcal{H} | \mathbf{N} \rangle \; = \; E_{\mathbf{N}\mathbf{N}-\mathbf{1}} | \mathbf{N}-\mathbf{1} \rangle \; + \; E_{\mathbf{N}\mathbf{N}} | \mathbf{N} \rangle \; + \; E_{\mathbf{N}\mathbf{N}+\mathbf{1}} | \mathbf{N}+\mathbf{1} \rangle$

 $E_{NN-1} = E_{N-1N}, E_{NN} = \langle N | \mathcal{H} | N \rangle$

and $E_{NN+1}|N+1\rangle = (\mathcal{H} - E_{NN})|N\rangle - E_{NN-1}|N-1\rangle$

powered by LATEX

<ロ> < 同> < 三> < 三> < 三> < 三> < 三 > < ○</td>

Outline	$\beta \beta$ decay	shell model	Structure Function	Gamow-Teller SF	Quenching	2v calculations	0ν calculations	0ν results	summary	ap
0	0	000000	0000	0000	00	00	00	00000	00	0

In the first step we write:

 $\mathcal{H}|\mathbf{1}\rangle=E_{11}|\mathbf{1}\rangle+E_{12}|\mathbf{2}\rangle$

there E_{11} is just $\langle \mathbf{1} | \mathcal{H} | \mathbf{1} \rangle \langle \mathcal{H} \rangle$, the mean value of \mathcal{H} . In the second step:

 $\mathcal{H}|\mathbf{2}\rangle = E_{21}|\mathbf{1}\rangle + E_{22}|\mathbf{2}\rangle + E_{23}|\mathbf{3}\rangle$

The hermiticity of \mathcal{H} implies $E_{21} = E_{12}$, E_{22} is just $\langle \mathbf{2} | \mathcal{H} | \mathbf{2} \rangle$ and E_{23} is obtained by normalization :

$$E_{23}|\mathbf{3}\rangle = (\mathcal{H} - E_{22})|\mathbf{2}\rangle - E_{21}|\mathbf{1}\rangle$$

At rank N, the following relations hold:

$$\mathcal{H}|\mathbf{N}\rangle = E_{\mathbf{NN}-1}|\mathbf{N}-1\rangle + E_{\mathbf{NN}}|\mathbf{N}\rangle + E_{\mathbf{NN}+1}|\mathbf{N}+1\rangle$$

 $E_{NN-1} = E_{N-1N}, E_{NN} = \langle N | \mathcal{H} | N \rangle$

and $E_{NN+1}|N+1\rangle = (\mathcal{H} - E_{NN})|N\rangle - E_{NN-1}|N-1\rangle$

powered by LATEX

Outline	$\beta \beta$ decay	shell model	Structure Function	Gamow-Teller SF	Quenching	2v calculations	0ν calculations	0ν results	summary	ap
0	0	000000	0000	0000	00	00	00	00000	00	0

In the first step we write:

 $\mathcal{H}|\mathbf{1}\rangle=E_{11}|\mathbf{1}\rangle+E_{12}|\mathbf{2}\rangle$

there E_{11} is just $\langle \mathbf{1} | \mathcal{H} | \mathbf{1} \rangle \langle \mathcal{H} \rangle$, the mean value of \mathcal{H} . In the second step:

 $\mathcal{H}|\mathbf{2}\rangle = E_{21}|\mathbf{1}\rangle + E_{22}|\mathbf{2}\rangle + E_{23}|\mathbf{3}\rangle$

The hermiticity of \mathcal{H} implies $E_{21} = E_{12}$, E_{22} is just $\langle \mathbf{2} | \mathcal{H} | \mathbf{2} \rangle$ and E_{23} is obtained by normalization :

$$E_{23}|\mathbf{3}\rangle = (\mathcal{H} - E_{22})|\mathbf{2}\rangle - E_{21}|\mathbf{1}\rangle$$

At rank N, the following relations hold:

$$\mathcal{H}|\mathbf{N}\rangle = E_{\mathbf{NN}-1}|\mathbf{N}-1\rangle + E_{\mathbf{NN}}|\mathbf{N}\rangle + E_{\mathbf{NN}+1}|\mathbf{N}+1\rangle$$

 $E_{NN-1} = E_{N-1N}, E_{NN} = \langle N | \mathcal{H} | N \rangle$

and $E_{NN+1}|N+1\rangle = (\mathcal{H} - E_{NN})|N\rangle - E_{NN-1}|N-1\rangle$

powered by LATEX

<□> <同> < 三> < 三> < 三> < 三> < ○</p>

It is explicit that we have built a tridiagonal matrix

$$\langle I|\mathcal{H}|J\rangle = \langle J|\mathcal{H}|I\rangle = 0$$
 if $|I-J| > 1$

 Outline
 ββ decay
 shell mode
 Structure Function
 Gamow-Teller SF
 Quenching
 2ν calculation
 0ν calculation
 0ν results
 summary
 a

 0
 0
 000000
 0000
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00

Lanczos Strength Function

Let Ω be an operator acting on some initial state $|\Phi_{ini}\rangle$, we obtain the state $\Omega |\Phi_{ini}\rangle$ whose norm is the sum rule of the operator Ω in the initial state:

$$S = ||\Omega|\Phi_{ini}\rangle|| = \sqrt{\langle \Phi_{ini}|\Omega^2|\Phi_{ini}\rangle}$$

Depending on the nature of the operator Ω ,

the state $\Omega |\Phi_{ini}\rangle$ belongs to the same nucleus (if Ω is a e.m transition operator) or to another (Gamow-Teller, nucleon transfer, $a_i^{\dagger}/\tilde{a}_j$, $\beta\beta$, ...)

If the operator Ω does not commute with \mathcal{H} , $\Omega |\Phi_{ini}\rangle$ is not necessarily an eigenvector of the system,

BUT it can be developped in energy eigenstates:

$$\begin{aligned} \Omega |\Phi_{ini}\rangle &= \sum_{i} S(E_{i}) |E_{i}\rangle \text{ and } \langle \Phi_{ini} |\Omega^{2}| \Phi_{ini}\rangle &= \sum_{i} S^{2}(E_{i}) \\ \text{where } S^{2}(E_{i}) \text{ is the strength function (or structure function)} \\ (S(E_{i}) &= \langle E_{i} |\Omega| \Phi_{ini}\rangle) \end{aligned}$$

Jac.

 Outline
 ββ decay
 shell mode
 Structure Function
 Gamow-Teller SF
 Quenching
 2ν calculation
 0ν calculation
 0ν results
 summary
 arr

 0
 0
 000000
 0
 0000
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00

Lanczos Structure Function

If we carry on the Lanczos procedure using $|\Sigma\rangle = \Omega |\Phi_{ini}\rangle$ as initial pivot. then H is again diagonalized to obtain the eigenvalues $|E_i\rangle$

U is the unitary matrix that diagonalizes ${\cal H}$ and gives the expression of the eigenvectors in terms of the Lanczos vectors:

 $S(E_i) = U(1, i)$

How good is the Strength function obtained at iteration N compared to the exact one?

< ロ > < 母 > < 言 > < 言 > こ う < で

Lanczos Structure Function

Any distribution can be characterized by the moments of the distribution.

$$\bar{E} = \langle \Omega | \boldsymbol{H} | \Omega \rangle = \sum_{i} E_{i} |\langle E_{i} | \Omega | \Phi_{ini} \rangle|^{2}$$

$$m_{n} = \langle \Omega | (\boldsymbol{H} - \bar{E})^{n} | \Omega \rangle = \sum_{i} (E_{i} - \bar{E})^{n} |\langle E_{i} | \Omega | \Phi_{ini} \rangle|^{2}$$
Gaussian distribution characterized by two
moments $(\bar{E}, \sigma^{2} = m_{2})$

$$g(E) = \frac{1}{\sigma \sqrt{2\pi}} \exp(-\frac{(E - \bar{E})^{2}}{2\sigma^{2}})$$

powered by LAT_EX イロト イロト イヨト イヨト ヨー のへへ

 Outline
 $\beta \beta$ decay
 shell model
 Structure Function
 Gamow-Teller SF
 Quenching
 2ν calculations
 0ν calculations
 0ν results
 summary
 a

 0
 0
 000000
 000
 000
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 <t

Lanczos Structure Function

Lanczos method provides a natural way of determining the basis $|\alpha\rangle$.

Initial vector $|\mathbf{1}\rangle = \frac{|\Omega\rangle}{\sqrt{\langle \Omega | \Omega \rangle}}$. $E_{12}|\mathbf{2}\rangle = (\mathbf{H} - E_{11})|\mathbf{1}\rangle$ $E_{23}|\mathbf{3}\rangle = (\mathbf{H} - E_{22})|\mathbf{2}\rangle - E_{12}|\mathbf{1}\rangle$ \cdots $E_{NN+1}|\mathbf{N} + \mathbf{1}\rangle = (\mathbf{H} - E_{NN})|\mathbf{N}\rangle$ $-E_{N-1N}|\mathbf{N} - \mathbf{1}\rangle$ Each Lanczos iteration gives information about two new moments of the distribution.

$$\begin{split} E_{11} &= \langle \mathbf{1} | \boldsymbol{H} | \mathbf{1} \rangle = \bar{E} \\ E_{12}^2 &= \langle \Omega | (\boldsymbol{H} - E_{11})^2 | \Omega \rangle = m_2 \\ E_{22} &= \frac{m_3}{m_2} + \bar{E} \\ E_{23}^2 &= \frac{m_4}{m_2} - \frac{m_3^2}{m_2^2} - m_2 \end{split}$$

where $E_{NN} = \langle \mathbf{N} | \boldsymbol{H} | \mathbf{N} \rangle, \quad E_{NN+1} = E_{N+1N}$

Diagonalizing Lanczos matrix after N iterations gives an approximation to the distribution with the same lowest 2N moments.

powered by LATEX ১০০৬ - ১০০০ - ১০০০ - ১০০০ ১০০০ - ১০০০ - ১০০০ - ১০০০

< D >

powered by LATEX

GT Strength on ⁴⁸Sc

powered by LAT_EX 아이아 릴 사람 사람 사람 사람 수 대 사

GT Strength on ⁴⁸Sc

powered by LAT_EX 아이아 로 아이아 (라아이머) (리아이아) (리아

⁴⁸Ca(p,n)⁴⁸Sc Strength Function

⁴⁸Ca(p,n)⁴⁸Sc Strength Function

 Outline
 $\beta \beta$ decay
 shell model
 Structure Function
 Gamow-Teller SF
 Quenching
 2ν calculations
 0ν calculations
 0ν results
 summary
 approximation

 0
 0
 000000
 0000
 0000
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00

Quenching of GT strength in the *pf*-shell

powered by LAT_EX 《 ㅁ 》 《 큔 》 《 큰 》 《 큰 》 트 《 이 익 아

Quenching of GT operator

$$\hat{i}\rangle = \alpha |0\hbar\omega\rangle + \sum_{n\neq 0} \beta_n |n\hbar\omega\rangle,$$

$$|\hat{t}\rangle = \alpha' |0\hbar\omega\rangle + \sum_{n\neq 0} \beta'_n |n\hbar\omega\rangle$$

then

$$\langle \hat{f} \parallel \mathcal{T} \parallel \hat{i} \rangle^2 = \left(\alpha \alpha' T_0 + \sum_{n \neq 0} \beta_n \beta'_n T_n \right)^2,$$

- $n \neq 0$ contributions negligible
- $\blacktriangleright \ \alpha \approx \alpha'$

 \longrightarrow projection of the physical wavefunction in the $0\hbar\omega$ space is $\mathbf{Q}\approx\alpha^2$

< 日 > < 四 > < 三 > < 三 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 0 < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > <

transition quenched by Q²

 $(\beta\beta)_{2\nu}$ structure function

$$M_{GT}^{2\nu} = \sum_{m} \frac{\langle 0_{f}^{+} ||\vec{\sigma}t_{-}||1_{m}^{+}\rangle\langle 1_{m}^{+}||\vec{\sigma}t_{-}||0_{i}^{+}\rangle}{E_{m} + E_{0}}$$

powered by LAT_EX ・ロト・ロト・モート モーシュクへで

 $(\beta\beta)_{2\nu}$ structure function


```
(\beta\beta)_{2\nu} structure function
```

$$M_{GT}^{2\nu} = \sum_{m} \frac{\langle 0_{f}^{+} ||\vec{\sigma}t_{-}||1_{m}^{+}\rangle\langle 1_{m}^{+}||\vec{\sigma}t_{-}|| 0_{i}^{+}\rangle}{E_{m} + E_{0}}$$
Calculation in three steps:

► calculate the final and initial states

 Outline
 $\beta \beta$ decay
 shell model
 Structure Function
 Gamow-Teller SF
 Quenching
 2ν calculations
 0ν calculations
 0ν results
 summary approx

 0
 0
 000000
 0000
 0000
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00</td

 $(\beta\beta)_{2\nu}$ structure function

$$M_{GT}^{2\nu} = \sum_{m} \frac{\langle 0_{f}^{+} ||\vec{\sigma}t_{-}||1_{m}^{+}\rangle\langle 1_{m}^{+}||\vec{\sigma}t_{-}||0_{i}^{+}\rangle}{E_{m} + E_{0}}$$

Calculation in three steps:

- calculate the final and initial states
- generate the doorway states $\vec{\sigma} t_{-} |0_{i}^{+}\rangle$ and $\vec{\sigma} t_{+} |0_{f}^{+}\rangle$

powered by LAT_EX 《 다 › 《 큔 › 《 큔 › 《 큔 › 《 큔 · 오 《 ·

 Outline
 $\beta \beta$ decay
 shell model
 Structure Function
 Gamow-Teller SF
 Quenching
 2ν calculations
 0ν calculations
 0ν results
 summary are summary and one of the summary and one

 $(\beta\beta)_{2\nu}$ structure function

$$M_{GT}^{2\nu} = \sum_{m} \frac{\langle 0_{f}^{+} ||\vec{\sigma}t_{-}||1_{m}^{+}\rangle\langle 1_{m}^{+}||\vec{\sigma}t_{-}||0_{i}^{+}\rangle}{E_{m} + E_{0}}$$

Calculation in three steps:

- calculate the final and initial states
- generate the doorway states $\vec{\sigma} t_{-} |0_{i}^{+}\rangle$ and $\vec{\sigma} t_{+} |0_{f}^{+}\rangle$
- take a doorway and use of Lanczos Strength Function method:

powered by LAT_EX ৰামান্দ্ৰা বিদ্যালয় বি

 $(\beta\beta)_{2\nu}$ structure function

$$M_{GT}^{2\nu} = \sum_{m} \frac{\langle 0_{f}^{+} ||\vec{\sigma}t_{-}||1_{m}^{+}\rangle\langle 1_{m}^{+}||\vec{\sigma}t_{-}||0_{i}^{+}\rangle}{E_{m} + E_{0}}$$

Calculation in three steps:

- calculate the final and initial states
- generate the doorway states $\vec{\sigma} t_{-} |0_{i}^{+}\rangle$ and $\vec{\sigma} t_{+} |0_{f}^{+}\rangle$
- take a doorway and use of Lanczos Strength Function method:

- at iteration N, N 1⁺ states in the intermediate nucleus, with excitation energies E_m

 Outline
 $\beta \beta$ decay
 shell model
 Structure Function
 Gamow-Teller SF
 Quenching
 2ν calculations
 0ν calculations
 0ν results
 summary approx

 0
 0
 000000
 0000
 0000
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00</td

 $(\beta\beta)_{2\nu}$ structure function

$$M_{GT}^{2\nu} = \sum_{m} \frac{\langle 0_{f}^{+} ||\vec{\sigma}t_{-}||1_{m}^{+}\rangle\langle 1_{m}^{+}||\vec{\sigma}t_{-}|| 0_{i}^{+}\rangle}{E_{m} + E_{0}}$$

Calculation in three steps:

- calculate the final and initial states
- generate the doorway states $\vec{\sigma} t_{-} |0_{i}^{+}\rangle$ and $\vec{\sigma} t_{+} |0_{f}^{+}\rangle$
- take a doorway and use of Lanczos Strength Function method:

- at iteration N, N 1⁺ states in the intermediate nucleus, with excitation energies E_m

• overlap with the other doorway, enter energy denominators and add up the N contributions

<□> <同> < 三> < 三> < 三> < 三> < ○</p>

0		1:600								
0	0	000000	0000	0000	00	0•	00	00000	00	0
Outline	$\beta \beta$ decay	shell model	Structure Function	Gamow-Teller SF	Quenching	2v calculations	0ν calculations	0ν results	summary	ар

< □ ▶ P owered by LATEX ₹

-										
0	0	000000	0000	0000	00	0•	00	00000	00	0
Outline	$\beta \beta$ decay	shell model	Structure Function	Gamow-Teller SF	Quenching	2v calculations	0ν calculations	0ν results	summary	ap

2ν half-lifes

2 ν	half-	lifes								
0	0	000000	0000	0000	00	00	00	00000	00	0
Outline	$\beta \beta$ decay	shell model	Structure Function	Gamow-Teller SF	Quenching	2v calculations	0ν calculations	0ν results	summary	ap

Parent nuclei	⁴⁸ Ca	⁷⁶ Ge	⁸² Se	¹³⁰ Te	¹³⁶ Xe	
$T_{1/2}^{2\nu}(g.s.)$ th.	3.7 <i>E</i> 19	1.15 <i>E</i> 21	3.4 <i>E</i> 19	4 <i>E</i> 20	6 <i>E</i> 20	
$T_{1/2}^{2\nu}(g.s.) \exp (\frac{1}{2})$	4.2 <i>E</i> 19	1.4 <i>E</i> 21	8.3 <i>E</i> 19	2.7 <i>E</i> 21	> 8.1 <i>E</i> 20	

powered by LATEX €

 $\mathcal{O} \mathcal{Q} \mathcal{O}$

Exchange of a light neutrino, only left-handed currents

The theoretical expression of the half-life of the 0ν mode can be written as:

$$[T^{0
u}_{1/2}(0^+ o 0^+)]^{-1} = G_{0
u} |M^{0
u}|^2 \langle m_{
u}
angle^2$$

powered by LAT_EX へロ > く 団 > く ミ > く ミ > う タ Q

Outline	$\beta \beta$ decay	shell model	Structure Function	Gamow-Teller SF	Quenching	2v calculations	0v calculations	0ν results	summary	a
0	0	000000	0000	0000	00	00	0•	00000	00	0

Neutrinoless mode:

CLOSURE APPROXIMATION then

$$\langle \Psi_f || \mathcal{O}^{(K)} || \Psi_i \rangle$$
 with $\mathcal{O}^{(K)} = \sum_{ijkl} W_{ijkl}^{\lambda,K} \left[(a_i^{\dagger} a_j^{\dagger})^{\lambda} (\tilde{a}_k \tilde{a}_l)^{\lambda} \right]^K$

We are left with a "standard" nuclear structure problem

$$M_{(0\nu)} = M_{GT}^{(0\nu)} - \frac{g_V^2}{g_A^2} M_F^{(0\nu)} = \langle 0_f^+ | \sum_{n,m} h(\sigma_n.\sigma_m) t_{n-} t_{m-} | 0_i^+ \rangle - \frac{g_V^2}{g_A^2} \langle 0_f^+ | \sum_{n,m} h t_{n-} t_{m-} | 0_i^+ \rangle$$

powered by LAT_EX へロト 〈母 〉 〈 ミ 〉 〈 ミ 〉 く ロ 〉

Outline	$\beta \beta$ decay	shell model	Structure Function	Gamow-Teller SF	Quenching	2ν calculations	0ν calculations	0ν results	summary	a
0	0	000000	0000	0000	00	00	0●	00000	00	0

Neutrinoless mode:

CLOSURE APPROXIMATION then

$$\langle \Psi_{f} || \mathcal{O}^{(\kappa)} || \Psi_{i} \rangle$$
 with $\mathcal{O}^{(\kappa)} = \sum_{ijkl} \left(W_{ijkl}^{\lambda,\kappa} \right) \left[(a_{i}^{\dagger} a_{j}^{\dagger})^{\lambda} (\tilde{a}_{k} \tilde{a}_{l})^{\lambda} \right]^{\kappa}$
two-body operator

We are left with a "standard" nuclear structure problem

$$M_{(0\nu)} = M_{GT}^{(0\nu)} - \frac{g_V^2}{g_A^2} M_F^{(0\nu)} = \langle 0_f^+ | \sum_{n,m} h(\sigma_n.\sigma_m) t_{n-} t_{m-} | 0_i^+ \rangle - \frac{g_V^2}{g_A^2} \langle 0_f^+ | \sum_{n,m} h t_{n-} t_{m-} | 0_i^+ \rangle$$

powered by LAT_EX へロト 〈母 〉 〈 ミ 〉 〈 ミ 〉 く ロ 〉
 Outline
 β β deca
 shell mode
 Structure Function
 Gamow-Teller SF
 Quenching
 2ν calculation
 Oν calculation
 Oν result
 summary
 ar

 0
 0
 000000
 0000
 0000
 00
 00
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0

Neutrinoless mode:

CLOSURE APPROXIMATION then

$$\langle \Psi_{f} || \mathcal{O}^{(K)} || \Psi_{i} \rangle$$
 with $\mathcal{O}^{(K)} = \sum_{ijkl} \mathcal{W}_{ijkl}^{\lambda,K} \left[(a_{i}^{\dagger} a_{j}^{\dagger})^{\lambda} (\tilde{a}_{k} \tilde{a}_{l})^{\lambda} \right]^{K}$ two-body operator

We are left with a "standard" nuclear structure problem

$$M_{(0\nu)} = M_{GT}^{(0\nu)} - \frac{g_V^2}{g_A^2} M_F^{(0\nu)} = \langle 0_f^+ | \sum_{n,m} h(\sigma_n.\sigma_m) t_{n-} t_{m-} | 0_i^+ \rangle - \frac{g_V^2}{g_A^2} \langle 0_f^+ | \sum_{n,m} h t_{n-} t_{m-} | 0_i^+ \rangle$$

powered by LAT_EX

< ロ > < 四 > < 三 > < 三 > < 三 > <

Outline	$\beta \beta$ decay	shell model	Structure Function	Gamow-Teller SF	Quenching	2v calculations	0ν calculations	0ν results	summary	ap
0	0	000000	0000	0000	00	00	00	•0000	00	0

Update of 0ν results

$\langle m_{\! u} angle$ fo	$T_{\frac{1}{2}} = 10^{25} y.$	${\sf M}_{0 u}^{GT}$	1- χ_F
⁴⁸ Ca ⁷⁶ Ge ⁸² Se ⁹⁶ Zr	0.85 0.90 0.42	0.67 2.35 2.35	1.14 1.10 1.10
¹⁰⁰ Mo ¹¹⁰ Pd ¹¹⁶ Cd ¹²⁴ Sn	0.67 0.24 0.45	2.52 2.59 2.11	1.16 1.19 1.13
¹²⁸ Te ¹³⁰ Te ¹³⁶ Xe	1.92 0.35 0.41	2.36 2.13 1.77	1.13 1.13 1.13
¹⁵⁰ Nd	hopeless	for	SM !

powered by LATEX

< ロ > < 回 > < 三 > < 三 > < 三 > < 三 > へ 0 へ 0

Outline $\beta\beta$ decayshell modelStructure FunctionGamow-Teller SFQuenching 2ν calculations 0ν calculations 0ν resultssummary ap000000000000000000000000000000

Dependance on the effective interaction

The results depend only weakly on the effective interactions provided they are compatible with the spectroscopy of the region. For the lower *pf* shell we have three interactions that work properly, KB3, FPD6 and GXPF1. Their predictions for the 2ν and the neutrinoless modes are quite close to each other

	KB3	FPD6	GXPF1
${f M}_{GT}(2 u) \ {f M}_{GT}(0 u)$	0.083	0.104	0.107
	0.667	0.726	0.621

Similarly, in the r3g and r4h spaces, the variations among the predictions of spectroscopically tested interactions is small (10-20%)

powered by LATEX

< ロ > < 同 > < 三 > < 三 > < 三 > < 回 > < ○ <

Outline	$\beta \beta$ decay	shell model	Structure Function	Gamow-Teller SF	Quenching	2ν calculations	0ν calculations	0ν results	summary	а
0	0	000000	0000	0000	00	00	00	00000	00	C

Influence of deformation

Changing adequately the effective interaction we can increase or decrease the deformation of parent, grand-daughter or both, and so gauge its effect on the decays. A mismatch of deformation can reduce the $\beta\beta$ matrix elements by factors 2-3. In fact the fictitious decay Ti-Cr, using the same energetics that in Ca-Ti, has matrix elements more than twice larger. If we increase the deformation in both Ti and Cr nothing happens. On the contrary, if we reduce the deformation of Ti, the matrix elements are severely quenched. The effect of deformation is therefore quite important and cannot be overlooked

	⁴⁸ Ca → ⁴⁸ Ti	$^{48}\text{Ti} ightarrow ^{48}\text{Cr}$
${f M}_{GT}(2 u) \ {f M}_{GT}(0 u)$	0.083 0.667	0.213 1.298

powered by LAT_EX へロト 〈日 〉 〈 王 〉 〈 王 〉 〈 マ 〉 Outline $\beta \beta$ decayshell modelStructure FunctionGamow-Teller SFQuenching 2ν calculations 0ν calculations 0ν resultssummary ap000000000000000000000000000

Influence of the spin-orbit partner

Similarly, we can increase artificially the excitation energy of the spin-orbit partner of the intruder orbit. Surprisingly enough, this affects very little the values of the matrix elements, particularly in the neutrinoless case. Even removing the spin-orbit partner completely produces minor changes

	⁴⁸ Ca → ⁴⁸ Ti	$^{48}\mathrm{Ti} ightarrow ^{48}\mathrm{Cr}$				
M _{GT} (2ν) M _{GT} (0ν)	0.083 0.667	0.213 1.298				
Without spin-orbit partner						
	⁴⁸ Ca → ⁴⁸ Ti	$^{48}\text{Ti} ightarrow ^{48}\text{Cr}$				
M _{GT} (2ν) M _{GT} (0ν)	0.049 0.518	0.274 1.386				

powered by LAT_EX

Outline	$\beta \beta$ decay	shell model	Structure Function	Gamow-Teller SF	Quenching	2v calculations	0ν calculations	0ν results	summary	ap
0	0	000000	0000	0000	00	00	00	00000	00	0

J components (particle-particle representation)

powered by LAT_EX 《 다 》 《 라 》 《 코 》 《 코 》 《 다 》

- Large scale shell model calculations with high quality effective interactions are available or will be in the immediate future for all but one of the neutrinoless double beta emitters
- The theoretical spread of the values of the nuclear matrix elements entering in the lifetime calculations is greatly reduced if the ingredients of each calculation are examined critically and only those fulfilling a set of quality criteria are retained
- A concerted effort of benchmarking between LSSM and QRPA practitioners would be of utmost importance to increase the reliability and precision of the nuclear structure input for the double beta decay processes

 The most favorable case appears when both nuclei (emitter and daugther) are spherical (superfluid)

not far from semi-magic:

⁸²Se, ¹¹⁶Cd, ¹²⁴Sn, ¹³⁰Te, ¹³⁶Xe

- ▶ With the present work, ¹¹⁶Cd is the best case BUT ...
 - uncertainties with the interaction
 - what happens when we enlarge the valence space ?
 - region of ⁹⁶Zr/¹⁰⁰Mo remains to be studied more carefully

 $(\beta\beta)_{0\nu}$ matrix elements

$$\begin{split} M_{GT}^{(0\nu)} &= \langle 0_{f}^{+} \| \sum_{n,m} h(\sigma_{n}.\sigma_{m}) t_{n-} t_{m-} \| 0_{i}^{+} \rangle, \qquad \chi_{F} &= \langle 0_{f}^{+} \| \sum_{n,m} ht_{n-} t_{m-} \| 0_{i}^{+} \rangle \left(\frac{g_{V}}{g_{A}} \right)^{2} / M_{GT}^{(0\nu)}, \\ \chi_{GT}^{'} &= \langle 0_{f}^{+} \| \sum_{n,m} h' (\sigma_{n}.\sigma_{m}) t_{n-} t_{m-} \| 0_{i}^{+} \rangle / M_{GT}^{(0\nu)}, \qquad \chi_{F}^{'} &= \langle 0_{f}^{+} \| \sum_{n,m} h' t_{n-} t_{m-} \| 0_{i}^{+} \rangle \left(\frac{g_{V}}{g_{A}} \right)^{2} / M_{GT}^{(0\nu)}, \\ \chi_{GT}^{\omega} &= \langle 0_{f}^{+} \| \sum_{n,m} h_{\omega} (\sigma_{n}.\sigma_{m}) t_{n-} t_{m-} \| 0_{i}^{+} \rangle / M_{GT}^{(0\nu)}, \qquad \chi_{F}^{\omega} &= \langle 0_{f}^{+} \| \sum_{n,m} h_{\omega} t_{n-} t_{m-} \| 0_{i}^{+} \rangle \left(\frac{g_{V}}{g_{A}} \right)^{2} / M_{GT}^{(0\nu)}, \\ \chi_{T} &= \langle 0_{f}^{+} \| \sum_{n,m} h' [(\sigma_{n}.\hat{r}_{n,m}) (\sigma_{m}.\hat{r}_{n,m}) - \frac{1}{3} \sigma_{n}.\sigma_{m}] t_{n-} t_{m-} \| 0_{i}^{+} \rangle / M_{GT}^{(0\nu)}, \\ \chi_{P} &= \langle 0_{f}^{+} \| i \sum_{n,m} h' \left(\frac{t_{+n,m}}{2t_{n,m}} \right) [(\sigma_{n} - \sigma_{m}).(\hat{t}_{n,m} \times \hat{t}_{+n,m})] t_{n-} t_{m-} \| 0_{i}^{+} \rangle \frac{g_{V}}{g_{A}} / M_{GT}^{(0\nu)}, \\ \chi_{R} &= \frac{1}{6} (g_{-\frac{1}{2}}^{s} - g_{\frac{1}{2}}^{s}) \langle 0_{f}^{+} \| \sum_{n,m} h_{R} (\sigma_{n}.\sigma_{m}) t_{n-} t_{m-} \| 0_{i}^{+} \rangle \frac{g_{V}}{g_{A}} / M_{GT}^{(0\nu)}. \end{split}$$

back

powered by LATEX

() < </p>

Outine $\beta\beta$ decayshell modelStructure FunctionGamow-Teller SFQuenching 2ν calculations 0ν calculations 0ν resultssummaryapprox000

 $(\beta\beta)_{0\nu}$ matrix elements

$$\begin{split} h(r,\langle\mu\rangle) &= \frac{R_0}{r}\phi(\langle\mu\rangle m_e r),\\ h'(r,\langle\mu\rangle) &= h+\langle\mu\rangle m_e R_0 h_0(\langle\mu\rangle r),\\ h_{\omega}(r,\langle\mu\rangle) &= h-\langle\mu\rangle m_e R_0 h_0(\langle\mu\rangle r),\\ h_R(r,\langle\mu\rangle) &= -\frac{\langle\mu\rangle m_e}{M_i} (\frac{2}{\pi} \left(\frac{R_0}{r}\right)^2 - \langle\mu\rangle m_e R_0 h) + \frac{4\pi R_0^2}{M_p}\delta(r),\\ h_0(x) &= -\frac{d\phi}{dx}(x),\\ \phi(x) &= \frac{2}{\pi} [\sin(x) C_{int}(x) - \cos(x) S_{int}(x)],\\ \frac{d\phi}{dx} &= \frac{2}{\pi} [\sin(x) C_{int}(x) + \cos(x) S_{int}(x)]. \end{split}$$

 $S_{int}(x)$ and $C_{int}(x)$ being the integral sinus and cosinus functions,

$$S_{int}(x) = -\int_{x}^{\infty} \frac{\sin(\zeta)}{\zeta} d\zeta, \quad C_{int}(x) = -\int_{x}^{\infty} \frac{\cos(\zeta)}{\zeta} d\zeta$$

back

powered by LAT_EX ≧▶ ৗ • ⊃ ৭.০ে