pphh-TDA (AND BEYOND) FOR PAIRING

H. Molique and J. Dudek

IUFM d'Alsace and Louis Pasteur University, Strasbourg I and
IPHC/IReS - Strasbourg

THE PAIRING HAMILTONIAN

* The nuclear many-body pairing hamiltonian reads :

$$
H=\sum_{\alpha=1}^{\Omega}\left(\varepsilon_{\alpha}-\lambda\right) N_{\alpha}-\sum_{\alpha, \beta=1}^{\Omega} G_{\alpha \beta} P_{\alpha}^{\dagger} P_{\beta}
$$

where

$$
N_{\alpha}=a_{\alpha}^{\dagger} a_{\alpha}+a_{\bar{\alpha}}^{\dagger} a_{\bar{\alpha}} \quad \text { and } \quad P_{\alpha}^{\dagger}=a_{\alpha}^{\dagger} a_{\bar{\alpha}}^{\dagger}
$$

\star The symmetric (half-filled; $N=\Omega$) picket-fence model ($\varepsilon_{\alpha}=\alpha \varepsilon$;
$\varepsilon=1 \mathrm{MeV}$) with constant pairing G is studied.

* To ensure particle-hole symmetry, one choses the chemical potential $\boldsymbol{\lambda}$ to be equal to

$$
\lambda=\varepsilon\left(N+\frac{1}{2}\right)-\frac{G}{2}
$$

THE PAIRING HAMILTONIAN

夫 Refs: J. Hirsch, A. Mariano, J. Dukelski and P. Schuck, Ann. Phys. 296 (2002) 187; N. Dinh Dang, Phys. Rev. C71, 024302 (2005).

$$
\begin{gathered}
M_{p}=N_{p}, \quad M_{h}=2-N_{h}, \quad Q_{p}^{\dagger}=P_{p}^{\dagger}, \quad Q_{h}=-P_{h}^{\dagger} \\
D_{p}=1-M_{p}=1-N_{p}, \quad D_{h}=1-M_{h}=-\left(1-N_{h}\right)
\end{gathered}
$$

\star Single-particle energies:

$$
\varepsilon_{p}=\varepsilon(N+p), \quad \varepsilon_{h}=\varepsilon(N-h+1), \quad p, h=1, \ldots, N
$$

* The hamiltonian can be written in the form:

$$
\begin{aligned}
H & =-\varepsilon N^{2}+\sum_{p=h=1}^{N}\left[\varepsilon\left(p-\frac{1}{2}\right)+\frac{G}{2}\right]\left(M_{p}+M_{h}\right) \\
& -G \sum_{p p^{\prime}} Q_{p}^{\dagger} Q_{p^{\prime}}-G \sum_{h h^{\prime}} Q_{h}^{\dagger} Q_{h^{\prime}}+G \sum_{p h}\left(Q_{p}^{\dagger} Q_{h}^{\dagger}+Q_{p} Q_{h}\right)
\end{aligned}
$$

SCRPA CALCULATIONS

^ Ref.: J. Hirsch, A. Mariano, J. Dukelski and P. Schuck, Ann. Phys. 296 (2002) 187.

* The two-particle addition operator is defined as:

$$
A_{\tau}^{\dagger}=\sum_{p} X_{p}^{\tau} \bar{Q}_{p}^{\dagger}-\sum_{h} Y_{h}^{\tau} \bar{Q}_{h}
$$

where

$$
\bar{Q}_{p}^{\dagger}=\frac{Q_{p}^{\dagger}}{\sqrt{\left\langle D_{p}\right\rangle}}, \quad \bar{Q}_{h}^{\dagger}=\frac{Q_{h}^{\dagger}}{\sqrt{\left\langle D_{h}\right\rangle}}
$$

\star This leads to the SCRPA equations in matrix form:

$$
\left(\begin{array}{cc}
A & B \\
-B & C
\end{array}\right)\binom{X}{Y}=\hbar \Omega_{\tau}\binom{X}{Y}
$$

EXPLICIT FORM FOR SCRPA

^ Ref.: J. Hirsch, A. Mariano, J. Dukelski and P. Schuck, Ann. Phys. 296 (2002) 187.

$$
\begin{aligned}
A_{p p^{\prime}}^{S C R P A} & =2\left\{\left[\varepsilon\left(p-\frac{1}{2}\right)+\frac{G}{2}\right]\right. \\
& \left.+\frac{G}{\left\langle D_{p}\right\rangle}\left[\sum_{p^{\prime \prime}}\left\langle Q_{p^{\prime \prime}}^{\dagger} Q_{p}\right\rangle-\sum_{h^{\prime \prime}}\left\langle Q_{p} Q_{h^{\prime \prime}}\right\rangle\right]\right\} \delta_{p p^{\prime}} \\
& -G \frac{\left\langle D_{p} D_{p^{\prime}}\right\rangle}{\sqrt{\left\langle D_{p}\right\rangle\left\langle D_{p^{\prime}}\right\rangle}} \\
B_{p h}^{S C R P A} & =G \frac{\left\langle D_{p} D_{h}\right\rangle}{\sqrt{\left\langle D_{p}\right\rangle\left\langle D_{h}\right\rangle}} \\
C_{h h^{\prime}}^{S C R P A} & =-2\left\{\left[\varepsilon\left(h-\frac{1}{2}\right)+\frac{G}{2}\right]\right. \\
& \left.+\frac{G}{\left\langle D_{h}\right\rangle}\left[\sum_{h^{\prime \prime}}\left\langle Q_{h}^{\dagger} Q_{h^{\prime \prime}}\right\rangle-\sum_{p^{\prime \prime}}\left\langle Q_{p^{\prime \prime}}^{\dagger} Q_{h}^{\dagger}\right\rangle\right]\right\} \delta_{h h^{\prime}} \\
& +G \frac{\left\langle D_{h} D_{h^{\prime}}\right\rangle}{\sqrt{\left\langle D_{h}\right\rangle\left\langle D_{h^{\prime}}\right\rangle}}
\end{aligned}
$$

r-RPA AND (pp)-RPA SIMPLIFICATIONS

\star The r-RPA equations are obtained if one neglects all the expectation values $\left\langle Q_{p^{\prime}}^{\dagger} Q_{p}\right\rangle,\left\langle Q_{p} Q_{h}\right\rangle$ and $\left\langle Q_{h}^{\dagger} Q_{h^{\prime}}\right\rangle$, and by the simplification

$$
\left\langle\boldsymbol{D}_{\boldsymbol{i}} \boldsymbol{D}_{\boldsymbol{j}}\right\rangle \simeq\left\langle\boldsymbol{D}_{\boldsymbol{i}}\right\rangle\left\langle\boldsymbol{D}_{\boldsymbol{j}}\right\rangle
$$

\star The (pp)-RPA equations are obtained if one sets

$$
D_{p}=D_{h}=1
$$

EXPLICIT FORMS FOR r-RPA AND (pp)-RPA

$$
\begin{aligned}
A_{p \prime^{\prime}}^{r-R P A} & =2\left[\varepsilon\left(p-\frac{1}{2}\right)+\frac{G}{2}\right] \delta_{p p^{\prime}}-G \sqrt{\left\langle D_{p}\right\rangle\left\langle D_{p^{\prime}}\right\rangle} \\
B_{p h}^{r-R P A} & =G \sqrt{\left\langle D_{p}\right\rangle\left\langle D_{h}\right\rangle} \\
C_{h h^{\prime}}^{r-R P A} & =-2\left[\varepsilon\left(h-\frac{1}{2}\right)+\frac{G}{2}\right] \delta_{h h^{\prime}}+G \sqrt{\left\langle D_{h}\right\rangle\left\langle D_{h^{\prime}}\right\rangle}
\end{aligned}
$$

$$
\begin{aligned}
A_{p p^{\prime}}^{(p p)-R P A} & =2\left[\varepsilon\left(p-\frac{1}{2}\right)+\frac{G}{2}\right] \delta_{p p^{\prime}}-G \\
B_{p h}^{(p p)-R P A} & =G \\
C_{h h^{\prime}}^{(p p)-R P A} & =-2\left[\varepsilon\left(h-\frac{1}{2}\right)+\frac{G}{2}\right] \delta_{h h^{\prime}}+G
\end{aligned}
$$

pp-TDA CALCULATIONS

* If in the pp-RPA matrix one sets the off-diagonal blocs to zero ($\mathrm{B}=0$), one obtains the pp-TDA equations.
\star The pp-TDA equations can be alternatively derived by postulating

$$
|p p-T D A, \tau\rangle=\sum_{m>0} C_{m}^{\tau} a_{m}^{\dagger} a_{\bar{m}}^{\dagger}|H F\rangle
$$

and by solving the secular equation

$$
\hat{H}|p p-T D A, \tau\rangle=E_{\tau}|p p-T D A, \tau\rangle
$$

leading to the matrix form

$$
\sum_{m^{\prime}>0} H_{m m^{\prime}} C_{m^{\prime}}^{\tau}=E_{\tau} C_{m}^{\tau}
$$

pp-TDA CALCULATIONS

* We notice that the matrix element

$$
H_{m m^{\prime}}=\left\{\sum_{i ; o c c .}\left[2\left(\varepsilon_{i ; o c c .}-\lambda\right)-G_{i i}\right]+2\left(\varepsilon_{m}-\lambda\right)\right\} \delta_{m m^{\prime}}-G_{m m^{\prime}}
$$

is equal to $\boldsymbol{A}_{\boldsymbol{m m}}$ in the pp-RPA equations, up to the constant term

$$
\sum_{i ; o c c .}\left[2\left(\varepsilon_{i ; o c c .}-\lambda\right)-G_{i i}\right]=\langle\boldsymbol{H} \boldsymbol{F}| \hat{H}|H F\rangle
$$

pphh-TDA CALCULATIONS

* We now postulate

$$
|p p h h-T D A, \tau\rangle=\mathcal{C}_{00}^{\tau}|H F\rangle+\sum_{m i(>0)} \mathcal{C}_{m i}^{\tau} a_{m}^{\dagger} a_{\bar{m}}^{\dagger} a_{\bar{i}} a_{i}|H F\rangle
$$

\star This leads to the secular equation

$$
\sum_{n j} H_{m i ; n j} \mathcal{C}_{n j}^{\tau}=E_{\tau} \mathcal{C}_{m i}^{\tau}
$$

* Where the matrix elements are given by

$$
\begin{aligned}
H_{m i ; n j} & =\left\{\sum_{i^{\prime}}\left[2\left(\varepsilon_{i^{\prime}}-\lambda\right)-G_{i^{\prime} i^{\prime}}\right]+2\left(\varepsilon_{m}-\varepsilon_{i}\right)+2 G_{i i}\right\} \delta_{i j} \delta_{m n} \\
& -\delta_{i j} G_{m n}-\delta_{m n} G_{i j}
\end{aligned}
$$

QUALITATIVE COMPARISON

* In the pphh-TDA formalism, the properties of the (A)-nucleons system are directly described without distinguishing between addition and removal operators.
^ For the addition modes, the pp-TDA represent a first approximation to the pphh-TDA calculations, in which one would restrict oneselves to the subclass of 1-pair states originating from the level located immediately below the no-interaction Fermi surface for the (A+2)-nucleons system.

BEYOND pphh-TDA: THE PSY-MB METHOD

\star The idea is to enlarge the many-body basis with 2-pairs, 3-pairs etc. configurations, where a certain energy cut-off is used.

* The pphh-TDA is then equivalent to the PSY-MB procedure in which only the ground-state and the 1-pair configurations are taken into account.
* Direct diagonalization of max. 100000 configurations is performed with the Lanczos procedure.
^ Ref.: H.M. and J. Dudek, Phys. Rev. C 56 (1997) 1795

FORMAL MATRIX STRUCTURE

	GS	1-pair	2-pairs	3-pairs	4-pairs	\ldots
GS	X	X	0	0	0	\ldots
1-pair	X	X	X	0	0	\ldots
2-pairs	0	X	X	X	0	\ldots
3-pairs	0	0	X	X	X	\ldots
4-pairs	0	0	0	X	X	\ldots
\ldots						

SPACES AND REGIMES STUDIED

* Small space: 24 particles on 48 levels (2 704156 s=0 states):
\rightarrow GS
$\rightarrow 144$ 1-pair states
$\rightarrow 4356$ 2-pairs states
$\rightarrow 48400$ 3-pairs states
* Large space: 32 particles on 64 levels (601 080390 s=0 states):
\rightarrow GS
$\rightarrow 256$ 1-pair states
$\rightarrow 14400$ 2-pairs states
$\rightarrow 313600$ 3-pairs states
\star The normal and the superfluid regime is studied.

24/48 - CORR. ENERGY OF THE G.S.

* Only small values of the pairing interation strength are considered.
* Refs.: J. Hirsch et al., Ann. Phys. 296 (2002) 187, D. Gambacurta et al., Phys. Rev. C73, 014310 (2006).

\rightarrow Too strong correlations in the RPA ground-state and existence of RPA collapse.
\rightarrow Too less correlations in the pphh-TDA and r-RPA ground-states.
\rightarrow SCRPA and Boson(B) formalisms give almost identical results.
\rightarrow PSY-MB gives almost exact results while only 2% of the $s=0$ basis states are used.

24/48 - CORR. ENERGY OF THE G.S.

\star Correlation energies are plotted.

* Large values of the pairing interation strength are considered.

\rightarrow PSY-MB gives good results also for large values of the pairing strength, where the RPA solution has collapsed. There exists no abrupt phase transition.
\rightarrow The pphh-TDA method is not powerfull enough in the regime of very strong interactions.

24(26)/48 - EN. OF FIRST ADD. MODE

* Excitation energies are given with respect to the ground-state of the 24 particles system.
* Only small values if the pairing interation strength are considered.

\rightarrow The RPA and r-RPA results show the wrong tendency to decrease, as well as the pp-TDA.
\rightarrow The correct trend (increase) is given by the SCRPA, pphh-TDA and the PSY-MB methods.
\rightarrow The results of the pphh-TDA and PSY-MB calculations are almost undistinguishable.
\rightarrow The simpler pp-TDA calculations are doing better here than the pp-RPA or r-RPA versions.

24(26)/48 - EN. OF SECOND ADD. MODE

^ Excitation energies are given with respect to the ground-state of the 24 particles system..
^ Only small values of the pairing interation strength are considered.

\rightarrow Very similar behaviour of the pp-RPA, the r-RPA and the pp-TDA than for the first addition mode.
\rightarrow Results no longer good for the pphh-TDA case.
\rightarrow SCRPA and PSY-MB results are extremely close.

32/64 - PSY-MB CONVERGENCE

* Top row: $\mathrm{G}=0.345 \mathrm{MeV}$. Bottom row: $\mathrm{G}=0.375 \mathrm{MeV}$.

32/64 - PSY-MB CONVERGENCE

* Top row: $\mathrm{G}=0.345 \mathrm{MeV}$. Bottom row: $\mathrm{G}=0.375 \mathrm{MeV}$.

32/64-RECALLING BCS EQUATIONS

\star We briefly recall the BCS equations (attention: here N counts the number of single-particle doublet-orbitals):

$$
\begin{aligned}
1 & =\frac{G}{2} \sum_{i} \frac{1}{\tilde{e}_{i}} \\
N & =\sum_{i} v_{i}^{2}
\end{aligned}
$$

where the quasi-particle energies are given by:

$$
\tilde{e}_{i}=\sqrt{\left(\varepsilon_{i}-\lambda-G v_{i}^{2}\right)^{2}+\Delta^{2}}
$$

\star The BCS ground-state energy is given by:

$$
E_{B C S}=\sum_{i}\left(2 \varepsilon_{i}-G v_{n}^{2}\right) v_{n}^{2}-\Delta^{2} / G
$$

32/64 - SUPERFLUID REGIME

\rightarrow PSY-MB calculations are performed with less than 0.02% of the basis configurations.

\rightarrow PSY-MB gives good correlation energies for the superfluid regime.
\rightarrow The BCS correlation energies are much too large and the results differ stronger from the exact results as G increases. This is also the case for the PSY-MB method.

32/64 - SUPERFLUID REGIME

\rightarrow The s=0 excitations are described by 4 quasi-particles.
\rightarrow PSY-MB gives again good results, also for the first excitation energy of the s=0 system.
\rightarrow The BCS values are, here also, too large, and differ more for greater interaction strengths.

32/64 - SUPERFLUID REGIME

* Left: G=0.375 MeV. Right: G=0.435 MeV.

\rightarrow As G increases the deviations between the exact results and the PSY-MB results get larger.
\rightarrow Conversely, the BCS occupation probabilities are in better agreement with the exact results, for the larger value of the pairing strength!

CONCLUSIONS

\star The half-filled picket fence model has been employed in order to test various methods for the nuclear pairing correlations.
夫 A small system composed of 24 particles on 48 levels, as well as a large system of 32 particles on 64 levels has served as the model spaces.
\star An analysis in the normal and the superfluid regime has been performed. The crucial point is that no artificial abrupt phase transition has to be seen. * Very close results have been obtained in comparing the SCRPA and the PSY-MB methods in the normal regime. We look forward to see an extension of the SCRPA method to the superfluid regime (QPSCRPA ?).

* The BCS approximation has been widely used, but has also received some criticism over the years. However, the conclusions may vary depending on which criteria the arguments are based.
\star The PSY-MB method provides a robust treatment for systems composed of about 30 particles on 60 levels, up to relatively large values of the pairing strength.
\star This gives a good hope for realistic calculations in the future.

