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Exactly solvab'c ring Hamiltonians

50 of er pairs
49 years c » BCS model
43 years of - oxact solution

1) The Cooper problem (1956)

2) BCS approximation (1957)

3) BCS in nuclear structure (1958)

4) Richardson exact solution (1963)

5) Gaudin magnet (1976)

6) Rank 1 Richardson-Gaudin integrable models (2001)

7) Higher rank RG integrable models. T=1 pairing (2006).

8) SO(8) T=0,1 pairing model. A rank 4 RG integrable model.




The Cooper Problem

PHYSICAL REVIEW VOLUME 104,

Letters to the Editor

UBLICATION of brief reports of important discoveries in

physics may be secured by addressing them to this department.

The closing date for this department is five weeks prior to the date of

issue. No proof will be sent to the authors. The Board of Editors does

not hold itself responsible for the opinions expressed by the corre-

spondents. Communications should not exceed 600 words in length
and should be submitted in duplicate.

Bound Electron Pairs in a Degenerate
Fermi Gas*

Leon N. Coorer

Physics Department, University of Illinois, Urbana, Illinos
(Received September 21, 1956)

T has been proposed that a metal would display
superconducting properties at low temperatures if
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=(1/V) exp[i(ky-r1+ks-rs)] which satisfy periodic
boundary conditions in a box of volume V, and where
r1 and ry are the coordinates of electron one and elec-
tron two. (One can use antisymmetric functions and
obtain essentially the same results, but alternatively
we can choose the electrons of opposite spin.) Defining
relative and center-of-mass coordinates, R=4(r,+rs),
r=(r;—r), K= (k;+k;) and k=31(k:—k,), and letting
Ex+ea= (h*/m)(3K*+k®), the Schrédinger equation
can be written

(8K+ ék"E)ak+Zk' ayr (k [Hl ! k?}

X6(K—K")/8(0)=0 (1)
where
¥(R,r)= (1/4/V)e™ ®x(r,K), @
x(0,K)=2x (au//V)e'kr,
and

1
(klmlk')=(— [ drH) _
V 0 phonons

Problem : A pair of electrons with an attractive interaction on top of

an inert Fermi sea.
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Bound pair for arbitrary small attractive interaction. The FS is unstable
against pair formation. Predicts a gap.

If the many-body system could be considered (at
least to a lowest approximation) a collection of pairs
of this kind above a Fermi sea, we would have (whether
or not the pairs had significant Bose properties) a model
similar to that proposed by Bardeen which would
display many of the equilibrium propertles of the

- superconducting state.




Bardeen-Cooper-Schrieffer
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Theory of Superconductivity*

J. BarpeeN, L. N. Coorer,t AND J. R. SCHRIEFFER}
Department of Physics, University of Illinois, Urbana, Illinois
(Received July 8, 1957)

A theory of superconductivity is presented, based on the fact
that the interaction between electrons resulting from virtual
exchange of phonons is attractive when the energy difference
between the electrons states involved is less than the phonon
energy, fiw. It is favorable to form a superconducting phase when
this attractive interaction dominates the repulsive screened
Coulomb interaction. The normal phase is described by the Bloch
individual-particle model. The ground state of a superconductor,
formed from a linear combination of normal state configurations
in which electrons are virtually excited in pairs of opposite spin
and momentum, is lower in energy than the normal state by
amount proportional to an average (fw)% consistent with the
isotope effect. A mutually orthogonal set of excited states in

For simplicity, consider the reduced BCS Hamiltonian

H,

ng”k+v

K,K'

PV\=¢€" [0}, T

one-to-one correspondence with those of the normal phase is
obtained by specifying occupation of certain Bloch states and by
using the rest to form a linear combination of virtual pair con-
figurations. The theory yields a second-order phase transition and
a Meissner effect in the form suggested by Pippard. Calculated
values of specific heats and penetration depths and their temper-
ature variation are in good agreement with experiment. There is
an energy gap for individual-particle excitations which decreases
from about 3.5kT, at T=0°K to zero at T,. Tables of matrix
elements of single-particle operators between the excited-state
superconducting wave functions, useful for perturbation expan-
sions and calculations of transition probabilities, are given.
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BCS In Nuclear Structure

PHYSICAL REVIEW ~ VOLUME 110, NUMBER 4 MAY 15, 1958

Possible Analogy between the Excitation Spectra of Nuclei and Those
of the Superconducting Metallic State

A. Bonr, B. R. MorreELsON, AND D. PinNes*
Institute for Theoretical Physics, University of Copenhagen, Copenhagen, Denmark, and Nordisk Institut for Teoretisk Atomfysik,
Copenhagen, Denmark

(Received January 7, 1958)

The evidence for an energy gap in the intrinsic excitation spectrum of nuclei is reviewed. A possible
analogy between this effect and the energy gap observed in the electronic excitation of a superconducting
metal is suggested.

It thus appears that there may exist interesting
similarities between the low-energy spectra of nuclei
and of the electrons in the superconducting metal.
However, it must be stressed that the former are

significantly influenced by the finite size of the nuclear
system. Thus, the energy gap 1s observed to decrease




Number Projected BCS

PHYSICAL REVIEW VOLUME 135, NUMBER 1B : 13 JULY

Conservation of Particle Number in the Nuclear Pairing Model*

Kraus DierricH, Hans J. MANG, AND JEAN H. PraADAL
Lawrence Radiation Laboratory, Universily of California, Berkeley, California

(Received 13 January 1964; revised manuscript received 26 February 1964)

The Euler-Lagrange equations corresponding to a Bardeen—Cooper-Schrieffer state that is an eigenstate
of the number operator are derived and solved numerically for a § interaction. The errors due to the non-
conservation of particle number in the usual Bardeen-Cooper-Schrieffer theory are studied as a function of
particle number, level density, and strength of the pairing interaction. A proof is given that for attractive
pairing interactions the lowest energy solution corresponds always to real positive probability amplitudes
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Richardson’s Exact Solution

1me 3, number 6 PHYSICS LETTERS 1 February 1963

A RESTRICTED CLASS OF EXACT EIGENSTATES
OF THE PAIRING-FORCE HAMILTONIAN *

R.W. RICHARDSON
H.M.Randall Laboratory of Physics,
University of Michigan, Ann Arbor, Michigan

Received 23 November 1962




Exact Solution of the BCS Model

R.W. Richardson: Phys. Lett. 3, 277 (1963); Phys. Rev. 141, 949 (1966).

_ t T
He =2 &M+ 092 C'hnC g, Gy G
K K,k'
Eigenvalue equation:

Hp |¥) = E[¥)
Ansatz for the eigenstates (generalized Cooper ansatz)

M
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Richardson equations

11 gY % 29y 1 0 E-YE
k=0 zgk_Ea ﬂ(ia)zl Ea_E,B | a=1 ’

Properties:
This is a set of M nonlinear coupled equations with M unknowns (E ).

The first and second terms correspond to the equations for the one pair
system. The third term contains the many body correlations and the
exchange symmetry.

The pair energies are either real or complex conjugated pairs. Complex
pair energies imply correlated pairs. Cooper pair?

There are as many solutions as states in the Hilbert space. The solutions
can be classified in the weak coupling limit (g—0).




ing

E for a system of 200 equidistant levels at half filli

I energles

Pa

ReE




Recovery of the Richardson solution: Ultrasmall
superconducting grains

*A fundamental questions posed by P.W. Anderson in J. Phys. Chem.
Solids 11 (1959) 26 :

«“at what size of particles will superconductivity actually cease?”

Anderson argued that for a sufficiently small metallic particle, since
d~Vol?, there will be a critical size d ~A,,, at which superconductivity
must disappear.

*This condition indeed arises for grains at the nanometer scale.

Main motivation from the revival of this old question came from the
WOrks:

*D.C. Ralph, C. T. Black y M. Tinkham
*PRL’'s 74 (1995) 3421 ; 76 (1996) 688 ; 78 (1997) 4087.




PBCS study of ultrasmall grains:
*Braun y J. von Delft. PRL 81 (1998)47
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Condensation energy for even and odd grains

PBCS versus Exact
JD and G. Sierra, PRL 83, 172 (1999)
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Richardson-Gaudin Models
JD, C. Esebbag and P. Schuck, PRL 87, 066403 (2001).

Combine the Richardson’s exact solution of the Pairing Model
and the integrable Gaudin Magnet

*Based on the rank 1 pair algebra of su(2).
00,0 |=x07, 07,0 |=0°
1) Pair realization
1

¥ =3 (aaraatl) ) = ag
2) Two-level realization

1 + + + +

¥ = 52 @Ben ~ BcnBem) s K= 2 Anden

3) Finite center ofrpnass momentum realization (LOFF) )

1 + + + + +
‘]IS,Q — E(ak+Qak+Q + b—kb—k _1)’ ‘Jk,Q = ak+Qb—k

4) Spin or Angular momentun realization




Construction of the Integrals of Motion

*The most general combination of linear and quadratic generators, with
the restriction of being hermitian and number conserving, Is

+2gz (J 37 +370° )+YijJi°J?_

The integrability condition [R, Rj]:O leads to
Yijxjk T XjkYki T inXij =0

*These are the same conditions encountered by Gaudin (J. de Phys.
37 (1976) 1087) in a spin model known as the Gaudin magnet.




Gaudin (1976) found three solutions
*Rational Model

eExact Solution

*Richardson equations

1+gzzQj +4g9 ) L o
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*Eigenvalues




Any function of the R operators defines a valid integrable
hamiltonian. The hamiltonian is diagonal in the basis of common
eigenstates of the R Operators.

*Two body Hamiltonians can be obtain by a linear combination of R
operators:

H zlzgl R(7,9)+C

*The parameters g, 's and ¢'s are arbitrary. There are 2 L+1 free
parameters to define an integrable hamiltonian in each of the three
models (L being the number of single particle levels).

*The rational model for fermions is precisely the integrable model
proposed by CRS (NPA 1997). They showed that the PM
hamiltonian can be obtained from (3) by choosing r = &

*An important difference between RG models and other ES models
IS the large number of free parameters.




Some models derived from RG

BCS Hamiltonian (Fermion and Boson)

Generalized Pairing Hamiltonians (Fermion and Bosons)

Central Spin Model

Spin models

Lipkin Model

Multilevel-level boson models (Trapped bosons, IBM, molecular, etc..)
Atom-molecule Hamiltonians (Feshbach resonances)

Generalized Tavis-Cummins models.

LOFF Hamiltonians
Review article: JD, S. Pittel and G. Sierra, Rev. Mod. Phys. 76 (2004) 643.




114G
J. D, C. Esebbag y S. Pittel. PRL 88 (2002) 062501.
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Generalized Richardson-Gaudin Models
@ RG Models are Exactly Solvable for any simple Lie algebra
@ Rank 2 includes O(5), O(3,2), SU(3)
@ O(5) Isovector pairing model, High Tc superconductivity.
R.W. Richardson, Phys. Rev. 144, 874 (1966).
J. Links et al. J. Phys. A 35, 6459 (2002).
F. Pan and J. Draayer, Phys. Rev. C 66, 044314 (2002).
J. D. et al. Phys. Rev. Lett. 96, 072503 (2006).

@0(3,2) IBM2, two-species Bose condensates. S. Lerma et al. PRC 74
(2006) 024314.

@ SU(3) Three level atoms, Generalized Tavis-Cummings models, etc.
In preparation. Elliot?

@ Rank 4 SO(8) model. Work in progress




The SO(5) algebra

For each copy of Lie Algebra (associated with a single-particle
level), the following 10 generators satisfy the SO(5) commutation
relationships:

e SU-(2) subalgebra:

T =2 (0 R+ P P)-< (VN +nn) T = (pn+pn) T =P+ p)
i 2 (0 i M 2 n P i \/E I i I \/E I i T
e T=1 Pair creation operators:

1
b’ =n'n’ by, = —=(n/p-" + p/'n’) b/, = p’p;’
» Second Cartan operator

1

H, =
2
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Integrals of motion and eigenvalues

L
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Richardson equations
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Neutron-proton pairing Hamiltonian




JD et al. PRL 96 (2006) 072503

13

o | — E 12 ¢ E T=0 ]
120 o 0 T @ .T,_O ] 10 . . ]
Posfe 5 - 1 2¢, =00, 2¢, =6.00,
11} 1 6 ° e ] 712 Ps/2
| ‘| 2¢. =625 2¢ =7.10,
Oﬂoo...n...o.g 0l o e o o o | 5/2 Pr/2
al 2f Tt 1 9. 08
T R P R Jo/2
) : T=1 10] L T=1
ceser ] 8l « ° o
C—Ull,; T 6:'
2. & |
O/® © ®eo0 0 000 o o L e e O e e -
ST -2'-,:?':,":’.’:",7,':;{@} and {e} for _the \_/ve_ak and
A i 11 strong coupling limit for
I - | 0/ .
N ol . - T=0,1,2 states
11+ 6L e ® ]
- 4-_
1+ . 2'_
Oe® © ®gp@ T @0 g0® @ ~' ol e © O o
] o *% e 3e °°
02 01 00 01 02 32 10 1 2 3

Imaginary Imaginary




The SO(8) RG model

Pair operators:
. 21 +1 - , oot N /2I+1 . 010
R = 2 |:C' G ]oor - D= 2 |:C' G :|00'O

Exactly solvable SO(8) Hamiltonian

H=>&an+g) | > RPR.+) D.D,
| LT : |




SUMMARY
rank A, su(n+1) B, so(2n+1) C, sp(2n) D, so(2n)
1 su(2) pairing | so(3)~su(2) | sp(2) ~su(2) so(2) ~u(1)
2 su(3) Elliott? S;’g’r)i r'?g' sp(4) ~so(5) ~Su?2°)(f§u o
sp(6)
3 su(4) Wigner so(7) Symplectic, so(6)~su(4)
FDSM FDSM
so(8) T=0,1
4 su(5) s0(9) sp(8) pairing;
FDSM




Closing Remarks

@ Overview of the exactly-solvable Richardson-Gaudin
models.

@ There has been major recent progress within the
SU(2) and SU(1,1) models. Applications to nuclear
physics and cold atomic gases.

@ Extension of the RG models to simple groups. Rank
2: SO(5), SO(3,2), SU(3). Rank 4 SO(8).

@ We can anticipate new interesting developments in
the future.
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