Tetrahedral and Octahedral Symmetries in Nuclei

Jerzy DUDEK
Institute for Subatomic Research
and
University of Strasbourg I

29th September 2006

COLLABORATORS:
Noêl DUBRAY
Dominique CURIEN
Jacek DOBACZEWSKI
Andrzej GÓźDŹ
Vincent PANGON
Nicolas SCHUNCK
Przemek OLBRATOWSKI

Part I

Introduction: Symmetry and Nuclear Stability

Nuclear Stability and Gaps in the Spectra [1]

- Here and in the following we use the nuclear mean-field approach The deformation-parameter axis
represents often many independent
deformations of the mean field

Nuclear Stability and Gaps in the Spectra [1]

- Here and in the following we use the nuclear mean-field approach
- The deformation-parameter axis represents often many independent deformations of the mean field

Nuclear Stability and Gaps in the Spectra [1]

- Here and in the following we use the nuclear mean-field approach
- The deformation-parameter axis represents often many independent deformations of the mean field
- The presence of the sufficiently strong gaps at Fermi levels leads to shape coexistence
- In what follows we focus on shell effects generated by high symmetry point-groups (see below)

Nuclear Stability and Gaps in the Spectra [1]

- Here and in the following we use the nuclear mean-field approach
- The deformation-parameter axis represents often many independent deformations of the mean field
- The presence of the sufficiently strong gaps at Fermi levels leads to shape coexistence
- In what follows we focus on shell effects generated by high symmetry point-groups (see below)

Single-Particle Gaps and Underlying Symmetries [1]

- One of the first mechanisms used in nuclear physics is related to the Harmonic Oscillator 'rule': $\omega_{x}: \omega_{y}: \omega_{z}=k: m: n$
- This mechanism manifests (is a special case) of SU_{3} symmetry

Single-Particle Gaps and Underlying Symmetries [1]

- One of the first mechanisms used in nuclear physics is related to the Harmonic Oscillator 'rule': $\omega_{x}: \omega_{y}: \omega_{z}=k: m: n$
- This mechanism manifests (is a special case) of SU_{3} symmetry

Single Particle Gaps and Underlying Symmetries [1]

- One of the first mechanisms used in nuclear physics is related to the Harmonic Oscillator 'rule': $\omega_{x}: \omega_{y}: \omega_{z}=k: m: n$
- This mechanism manifests (is a special case) of SU_{3} symmetry

Single Particle Gaps and Underlying Symmetries [1]

- One of the first mechanisms used in nuclear physics is related to the Harmonic Oscillator 'rule': $\omega_{x}: \omega_{y}: \omega_{z}=k: m: n$
- This mechanism manifests (is a special case) of SU_{3} symmetry

Symmetries and Implied Degeneracies of Levels [1]

- Both spherical gaps and deformed oscillator gaps arise because of the degeneracy of levels
- How to optimise the mathematical conditions so that the degeneracies are the strongest possible?

Symmetries and Implied Degeneracies of Levels [1]

- Both spherical gaps and deformed oscillator gaps arise because of the degeneracy of levels
- How to optimise the mathematical conditions so that the degeneracies are the strongest possible?

Symmetries and Implied Degeneracies of Levels [1]

- Both spherical gaps and deformed oscillator gaps arise because of the degeneracy of levels
- How to optimise the mathematical conditions so that the degeneracies are the strongest possible?
- The answer is:

Symmetries and Implied Degeneracies of Levels [1]

- Both spherical gaps and deformed oscillator gaps arise because of the degeneracy of levels
- How to optimise the mathematical conditions so that the degeneracies are the strongest possible?
- The answer is:

> Use the group- and the group-representation theory!

Symmetry Groups and Degeneracies of Levels

- Given Hamiltonian H and a group: $\mathcal{G}=\left\{\mathcal{O}_{1}, \mathcal{O}_{2}, \ldots \mathcal{O}_{f}\right\}$
- Assume that \mathcal{G} is a symmetry group of H i.e.

Symmetry Groups and Degeneracies of Levels

- Given Hamiltonian H and a group: $\mathcal{G}=\left\{\mathcal{O}_{1}, \mathcal{O}_{2}, \ldots \mathcal{O}_{f}\right\}$
- Assume that \mathcal{G} is a symmetry group of H i.e.

Symmetry Groups and Degeneracies of Levels

- Given Hamiltonian H and a group: $\mathcal{G}=\left\{\mathcal{O}_{1}, \mathcal{O}_{2}, \ldots \mathcal{O}_{f}\right\}$
- Assume that \mathcal{G} is a symmetry group of H i.e.

- Let irreducible representations of G be $\left\{\mathcal{R}_{1}, \mathcal{R}_{2}, \ldots \mathcal{R}_{r}\right\}$
- Let their dimensions be $\left\{d_{1}, d_{2}, \ldots d_{r}\right\}$, respectively
-Then the eigenvalues
of the problem

appear in multiplets d_{1}-fold, d_{2}-fold ... degenerate

Symmetry Groups and Degeneracies of Levels

- Given Hamiltonian H and a group: $\mathcal{G}=\left\{\mathcal{O}_{1}, \mathcal{O}_{2}, \ldots \mathcal{O}_{f}\right\}$
- Assume that \mathcal{G} is a symmetry group of H i.e.

- Let irreducible representations of G be $\left\{\mathcal{R}_{1}, \mathcal{R}_{2}, \ldots \mathcal{R}_{r}\right\}$
- Let their dimensions be $\left\{d_{1}, d_{2}, \ldots d_{r}\right\}$, respectively
- Then the eigenvalues $\left\{\varepsilon_{\nu}\right\}$ of the problem

appear in multiplets d_{1}-fold, d_{2}-fold ... degenerate

Symmetry Groups and Degeneracies of Levels

- Given Hamiltonian H and a group: $\mathcal{G}=\left\{\mathcal{O}_{1}, \mathcal{O}_{2}, \ldots \mathcal{O}_{f}\right\}$
- Assume that \mathcal{G} is a symmetry group of H i.e.

- Let irreducible representations of G be $\left\{\mathcal{R}_{1}, \mathcal{R}_{2}, \ldots \mathcal{R}_{r}\right\}$
- Let their dimensions be $\left\{d_{1}, d_{2}, \ldots d_{r}\right\}$, respectively
- Then the eigenvalues $\left\{\varepsilon_{\nu}\right\}$ of the problem

appear in multiplets d_{1}-fold, d_{2}-fold ... degenerate

What Are the Nuclear High-Level Symmetry Groups?

32 Point Groups: Subgroups

Figure: Cubic group structure

Dashed lines indicate that the subgroup marked is not invariant

Trivial groups: $C_{1} \equiv\{\mathbb{I}\}, C_{s} \equiv\{\mathbb{I}, \hat{\sigma}\}$ and $C_{i} \equiv\{\mathbb{I}, \hat{\pi}\}$

Only the double groups O_{h}^{D} and T_{d}^{D} lead to four-fold degeneracies in the nucleonic spectra - all the others cause merely two-fold degeneracies. This is why the former are called high-level ...

Irreducible Representations and Gaps - Nuclear Context

- The nuclear potential depth is approximately constant - it depends only weakly on the particle numbers and on deformation
- The higher the dimensions of the irreps. \rightarrow the higher the degeneracies of s.p. levels \rightarrow the larger the gaps, on the average
- The highest dimensions of the irreducible representations correspond to the Double Tetrahedral \& Octahedral Groups $(d=4)$

Three 'repartitions' of single particle levels into various irreducible repres.:
Left: one two-dimensional irrep.
Middle: two two-dimensional irreps.
Right: one two-dimensional and 2 four-dimensional irreps.

Symmetries and Gaps in Nuclear Context: Summary

To increase the chances of having big gaps in the spectra we either look for point groups with high dimension irreps or with many irreps

Symmetries and Gaps in Nuclear Context: Summary

To increase the chances of having big gaps in the spectra we either look for point groups with high dimension irreps or with many irreps

The above guide-lines (not theorems) are confirmed by calculations

Symmetries and Gaps in Nuclear Context: Summary

To increase the chances of having big gaps in the spectra we either look for point groups with high dimension irreps or with many irreps

The above guide-lines (not theorems) are confirmed by calculations

Part II

Octahedral and Tetrahedral Nuclei

Introducing Nuclear Octahedral Symmetry

Let us recall one of the magic forms introduced long time by Plato. The implied symmetry leads to the octahedral group denoted O_{h}

An octahedron has 8 equal walls. Its shape is invariant with respect to 48 symmetry elements that include inversion. However, the nuclear surface cannot be represented in the form of a diamond $\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow$

... but rather in a form of a regular spherical harmonic expansion:

$$
\mathcal{R}(\vartheta, \varphi)=R_{0} c(\{\alpha\})\left[1+\sum_{\lambda}^{\lambda_{\max }} \sum_{\mu=-\lambda}^{\lambda} \alpha_{\lambda, \mu} Y_{\lambda, \mu}(\vartheta, \varphi)\right]
$$

A Basis for Octahedral Symmetry

Only special combinations of spherical harmonics may form a basis for surfaces with octahedral symmetry:

Three Lowest Orders:
Rank \leftrightarrow Multipolarity λ

A Basis for Octahedral Symmetry

Only special combinations of spherical harmonics may form a basis for surfaces with octahedral symmetry:

Three Lowest Orders:
Rank \leftrightarrow Multipolarity λ

$$
\lambda=4: \quad \alpha_{40} \equiv o_{4} ; \quad \alpha_{4, \pm 4} \equiv \pm \sqrt{\frac{5}{14}} \cdot o_{4}
$$

A Basis for Octahedral Symmetry

Only special combinations of spherical harmonics may form a basis for surfaces with octahedral symmetry:

Three Lowest Orders:
Rank \leftrightarrow Multipolarity λ

$$
\lambda=4: \quad \alpha_{40} \equiv o_{4} ; \quad \alpha_{4, \pm 4} \equiv \pm \sqrt{\frac{5}{14}} \cdot o_{4}
$$

$$
\lambda=6: \quad \alpha_{60} \equiv o_{6} ; \quad \alpha_{6, \pm 4} \equiv-\sqrt{\frac{7}{2}} \cdot o_{6}
$$

A Basis for Octahedral Symmetry

Only special combinations of spherical harmonics may form a basis for surfaces with octahedral symmetry:

Three Lowest Orders: Rank \leftrightarrow Multipolarity λ

$$
\lambda=4: \quad \alpha_{40} \equiv o_{4} ; \quad \alpha_{4, \pm 4} \equiv \pm \sqrt{\frac{5}{14}} \cdot o_{4}
$$

$$
\lambda=6: \quad \alpha_{60} \equiv o_{6} ; \quad \alpha_{6, \pm 4} \equiv-\sqrt{\frac{7}{2}} \cdot o_{6}
$$

$$
\lambda=8: \quad \alpha_{80} \equiv o_{8} ; \quad \alpha_{8, \pm 4} \equiv \sqrt{\frac{28}{198}} \cdot o_{8} ; \quad \alpha_{8, \pm 8} \equiv \sqrt{\frac{65}{198}} \cdot o_{8}
$$

Nuclear Octahedral Shapes - 3D Examples

Illustrations below show the octahedral-symmetric surfaces at three increasing values of rank $\lambda=4$ deformations 0_{4} : $0.1,0.2$ and 0.3 :

Figure: $o_{4}=0.1$

Figure: $o_{4}=0.2$

Figure: $o_{4}=0.3$

Recall: $\quad \alpha_{40} \equiv o_{4} ; \quad \alpha_{4, \pm 4} \equiv \pm \sqrt{\frac{5}{14}} \cdot o_{4}$

Among the Highest Symmetries in Molecular Physics

Group T_{d} - Molecule: $\left[\mathrm{CH}_{4}\right]$

Group $\mathrm{D}_{6 d}$ - Mol.: $\left[\mathrm{Cr}\left(\mathrm{C}_{6} \mathrm{H}_{6}\right)_{2}\right]$

Group I_{h} - Molecule: [C60]

Nuclear Octahedral Shapes - Neutron Spectra

Double group O_{h}^{D} has four 2-dimensional and two 4-dimensional irreducible representations \rightarrow six distinct families of levels

Figure: Full lines correspond to 4-dimensional irreducible representations they are marked with double Nilsson labels. Observe huge gap at $\mathrm{N}=114$.

Nuclear Octahedral Shapes - Proton Spectra

Double group O_{h}^{D} has four 2-dimensional and two 4-dimensional irreducible representations \rightarrow six distinct families of levels

Figure: Full lines correspond to 4-dimensional irreducible representations

- they are marked with double Nilsson labels. Observe huge gap at $Z=70$.

Discrete Symmetries in Nuclei

Let us recall one of the magic forms introduced long time by Plato. The implied symmetry leads to the tetrahedral group denoted T_{d}

A tetrahedron has four equal walls. Its shape is invariant with respect to 24 symmetry elements. Tetrahedron is not invariant with respect to the inversion. Of course nuclei cannot be represented by a sharp-edge pyramid

but rather in a form of a regular spherical harmonic expansion:

Discrete Symmetries in Nuclei

Let us recall one of the magic forms introduced long time by Plato. The implied symmetry leads to the tetrahedral group denoted T_{d}

A tetrahedron has four equal walls. Its shape is invariant with respect to 24 symmetry elements. Tetrahedron is not invariant with respect to the inversion. Of course nuclei cannot be represented by a sharp-edge pyramid

... but rather in a form of a regular spherical harmonic expansion:

$$
\mathcal{R}(\vartheta, \varphi)=R_{0} c(\{\alpha\})\left[1+\sum_{\lambda}^{\lambda_{\text {max }}} \sum_{\mu=-\lambda}^{\lambda} \alpha_{\lambda, \mu} Y_{\lambda, \mu}(\vartheta, \varphi)\right]
$$

Tetrahedral Symmetry in Heavy Zr Nuclei

The Table below shows the HFB energies relative to the energy of the tetrahedral minimum. Calculations with SLy4 parametrisation. Energy in MeV.

Nucleus	${ }^{104} \mathrm{Zr}$	${ }^{106} \mathrm{Zr}$	${ }^{108} \mathrm{Zr}$	${ }^{110} \mathrm{Zr}$	${ }^{112} \mathrm{Zr}$
Tetrahedral	+0.00	+0.00	+0.00	+0.00	+0.00
Spherical	+0.22	+0.29	+0.39	+0.43	+0.03
Oblate	-1.57	-1.52	-1.10	+0.07	+0.30
Prolate	-2.07	-1.76	-0.68	+0.27	+1.01

Conclusion: In some exotic nuclei the ground-state energies may correspond to the tetrahedral minima

Part III

Tetrahedral Rare Earths - A Test-Ground

Abundance of Tetrahedral Nuclei along Periodic Table

- The tetrahedral/octahedral symmetric nuclei are predicted around magic closures $\left\{Z_{t}, N_{t}\right\}=\{32,40,56,64,70,90,132-136\}$

Abundance of Tetrahedral Nuclei along Periodic Table

- The tetrahedral/octahedral symmetric nuclei are predicted around magic closures $\left\{Z_{t}, N_{t}\right\}=\{32,40,56,64,70,90,132-136\}$
- ... and more precisely around the following nuclei:

$$
\begin{aligned}
& { }_{32}^{64} \mathrm{Ge}_{32},{ }_{32}^{72} \mathrm{Ge}_{40},{ }_{32}^{88} \mathrm{Ge}_{56},{ }_{40}^{80} \mathrm{Zr}_{40},{ }_{40}^{110} \mathrm{Zr}_{70},{ }_{56}^{112} \mathrm{Ba}_{56}, \\
& { }_{56}, \mathrm{Ba}_{70},{ }_{56}^{146} \mathrm{Ba}_{90},{ }_{64}^{134} \mathrm{Gd}_{70},{ }_{64}^{154} \mathrm{Gd}_{90},{ }_{70}^{160} \mathrm{Yb}_{90},{ }_{90}^{222} \mathrm{Th}_{132}
\end{aligned}
$$

- The majority of these are either proton-rich or neutron-rich

0 An important exception is the God's gift: Rare Earih Region around Gd and Yb mass $\mathrm{A} \sim 150-160$ nuclei

Abundance of Tetrahedral Nuclei along Periodic Table

- The tetrahedral/octahedral symmetric nuclei are predicted around magic closures $\left\{Z_{t}, N_{t}\right\}=\{32,40,56,64,70,90,132-136\}$
- ... and more precisely around the following nuclei:

$$
\begin{aligned}
& { }_{32}^{64} \mathrm{Ge}_{32},{ }_{32}^{72} \mathrm{Ge}_{40},{ }_{32}^{88} \mathrm{Ge}_{56},{ }_{40}^{80} \mathrm{Zr}_{40},{ }_{40}^{110} \mathrm{Zr}_{70},{ }_{56}^{112} \mathrm{Ba}_{56}, \\
& { }_{56}, \mathrm{Ba}_{70},{ }_{56}^{146} \mathrm{Ba}_{90},{ }_{64}^{134} \mathrm{Gd}_{70},{ }_{64}^{154} \mathrm{Gd}_{90},{ }_{70}^{160} \mathrm{Yb}_{90},{ }_{90}^{222} \mathrm{Th}_{132}
\end{aligned}
$$

- The majority of these are either proton-rich or neutron-rich
- An important exception is the God's gift: Rare Earth Region around Gd and Yb mass $\mathrm{A} \sim 150-160$ nuclei

Abundance of Tetrahedral Nuclei along Periodic Table

- The tetrahedral/octahedral symmetric nuclei are predicted around magic closures $\left\{Z_{t}, N_{t}\right\}=\{32,40,56,64,70,90,132-136\}$
- ... and more precisely around the following nuclei:

$$
\begin{aligned}
& { }_{32}^{64} \mathrm{Ge}_{32},{ }_{32}^{72} \mathrm{Ge}_{40},{ }_{32}^{88} \mathrm{Ge}_{56},{ }_{40}^{80} \mathrm{Zr}_{40},{ }_{40}^{110} \mathrm{Zr}_{70},{ }_{56}^{112} \mathrm{Ba}_{56}, \\
& { }^{126} \mathrm{~F}_{56} \mathrm{Ba}_{70},{ }_{56}^{146} \mathrm{Ba}_{90},{ }_{64}^{134} \mathrm{Gd}_{70},{ }_{64}^{154} \mathrm{Gd}_{90},{ }_{70}^{160} \mathrm{Yb}_{90},{ }_{90}^{222} \mathrm{Th}_{132}
\end{aligned}
$$

- The majority of these are either proton-rich or neutron-rich
- An important exception is the God's gift: Rare Earth Region around Gd and Yb mass $\mathrm{A} \sim 150-160$ nuclei

Therefore after having examined this 'easier' range the majority of the physics in question corresponds to the realm of Spiral 2

Abundance of Tetrahedral Nuclei along Periodic Table

- The tetrahedral/octahedral symmetric nuclei are predicted around magic closures $\left\{Z_{t}, N_{t}\right\}=\{32,40,56,64,70,90,132-136\}$
- ... and more precisely around the following nuclei:

$$
\begin{aligned}
& { }_{32}^{64} \mathrm{Ge}_{32},{ }_{32}^{72} \mathrm{Ge}_{40},{ }_{32}^{88} \mathrm{Ge}_{56},{ }_{40}^{80} \mathrm{Zr}_{40},{ }_{40}^{110} \mathrm{Zr}_{70},{ }_{56}^{112} \mathrm{Ba}_{56}, \\
& { }_{56}, \mathrm{Ba}_{70},{ }_{56}^{146} \mathrm{Ba}_{90},{ }_{64}^{134} \mathrm{Gd}_{70},{ }_{64}^{154} \mathrm{Gd}_{90},{ }_{70}^{160} \mathrm{Yb}_{90},{ }_{90}^{222} \mathrm{Th}_{132}
\end{aligned}
$$

- The majority of these are either proton-rich or neutron-rich
- An important exception is the God's gift: Rare Earth Region around Gd and Yb mass $\mathrm{A} \sim 150-160$ nuclei
- Therefore after having examined this 'easier' range the majority of the physics in question corresponds to the realm of Spiral 2

Tetrahedral vs. Ground-State Configurations

Tetrahedral minima compete with the prolate ground-state minima

Figure: Barriers between the tetrahedral and quadrupole-deformed minima.

Tetrahedral vs. Ground-State Configurations

Tetrahedral minima compete with the prolate ground-state minima

Figure: Barriers between the tetrahedral and quadrupole-deformed minima.

Tetrahedral vs. Ground-State Configurations

Tetrahedral minima compete with the prolate ground-state minima

Figure: Barriers between the tetrahedral and quadrupole-deformed minima.

Tetrahedral Shapes in Rare Earth Nuclei - Stability

The chances to observe the new symmetries in experiment increase with the increasing heights of the barriers surrounding these minima

Figure: Barriers between the tetrahedral and quadrupole-deformed minima. Brick size 100 keV ; this corresponds to the highest barriers $\sim 2.5 \mathrm{MeV}$.

- Conclusion: The highest barriers correspond to the Gadolinum and Ytterbium nuclei with $N \sim 90$.

Tetrahedral Shapes in Rare Earth Nuclei - Stability

The chances to observe the new symmetries in experiment increase with the increasing heights of the barriers surrounding these minima

Figure: Barriers between the tetrahedral and quadrupole-deformed minima. Brick size 100 keV ; this corresponds to the highest barriers $\sim 2.5 \mathrm{MeV}$.

- Conclusion: The highest barriers correspond to the Gadolinum and Ytterbium nuclei with $N \sim 90$.

Tetrahedral vs. Octahedral Symmetry: Big Gains

Tetrahedral and octahedral deformations combine lowering energies
Tetrahedral Symmetry / Instability

${ }_{64}^{154} \mathrm{Gd}_{90}$ Tetrahedral Deformation (Rank Emin=-1.96, E0=0.41

Figure: The octahedral deformation may provide down to 1 MeV extra.

Tetrahedral vs. Octahedral Symmetry: Big Gains

Tetrahedral and octahedral deformations combine lowering energies
Tetrahedral Symmetry / Instability

Figure: The octahedral deformation may provide down to 1 MeV extra.

Tetrahedral vs. Octahedral Symmetry: Big Gains

Tetrahedral and octahedral deformations combine lowering energies
Tetrahedral Symmetry / Instability

Figure: The octahedral deformation may provide down to 1 MeV extra.

Tetrahedral vs. Octahedral Symmetry: Big Gains

Tetrahedral and octahedral deformations combine lowering energies
Tetrahedral Symmetry / Instability

Figure: The octahedral deformation may provide down to 1 MeV extra.

Tetrahedral vs. Normal-Deformed Energy Differences

The chances to observe the new symmetries in experiment increase with the decreasing energy difference: $\left(E_{t}-E_{n d}\right)$

Figure: Energy difference $\Delta E=\left(E_{t}-E_{n d}\right)$. Brick size 1 MeV .

- Conclusion: The best chances correspond to the $\mathrm{N} \sim 90-92$ isotones.

Tetrahedral vs. Normal-Deformed Energy Differences

The chances to observe the new symmetries in experiment increase with the decreasing energy difference: $\left(E_{t}-E_{n d}\right)$

Figure: Energy difference $\Delta E=\left(E_{t}-E_{n d}\right)$. Brick size 1 MeV .

- Conclusion: The best chances correspond to the $\mathrm{N} \sim 90-92$ isotones.

About Enormous Instability of Spherical Shapes

Let us examine the energy gain in spherical nuclei by allowing them to get tetrahedral and/or octahedral deformed

Figure: Energy difference $\Delta E \equiv\left(E_{s p h}-E_{t}\right)$ between the spherical and tetrahedral minima. Brick-size 500 keV .

- Conclusion:The majority of the Rare Earth area has 'unstable sphericity'! In other words: tetrahedral/prolate coexisting minima.

About Enormous Instability of Spherical Shapes

Let us examine the energy gain in spherical nuclei by allowing them to get tetrahedral and/or octahedral deformed

Figure: Energy difference $\Delta E \equiv\left(E_{s p h}-E_{t}\right)$ between the spherical and tetrahedral minima. Brick-size 500 keV .

- Conclusion: The majority of the Rare Earth area has 'unstable sphericity'! In other words: tetrahedral/prolate coexisting minima.

Tetrahedral/Octahedral Shapes Have No Q2-Moments

At the exact tetrahedral symmetry the quadrupole moments vanish.

Figure: Equilibrium shape $t_{1}=0.15$.

Tetrahedral/Octahedral Shapes Have No Q2-Moments

At the exact tetrahedral symmetry the quadrupole moments vanish.

However, the induced dipole moments are calculated to be sizeable.

Tetrahedral/Octahedral Shapes Have No Q2-Moments

At the exact tetrahedral symmetry the quadrupole moments vanish.

However, the induced dipole moments are calculated to be sizeable.

Comparison Theory - Experiment: Alignments

Three hypotheses: 1. Tetrahedral and Octahedral \leftrightarrow (microscopic); 2. Tetrahedral and Octahedral + Zero-Point Motion $\left(\alpha_{20}^{p o l .}=0.07\right)$;
3. Prolate ('standard')

Jerzy DUDEK \quad Tetrahedral and Octahedral Symmetries in Nuclei

Comparison Theory - Experiment: $\mathrm{B}(\mathrm{E} 2) / \mathrm{B}(\mathrm{E} 1)$

Comparison between the mean-field predictions and experiment

Possible Further Signs of Tetrahedral Symmetry

Table: Experimental ratios $B(E 2)_{\text {in }} / B(E 1)_{\text {out }} \times 10^{6}$

Spin	${ }^{152} \mathrm{Gd}$	${ }^{156} \mathrm{Gd}$	${ }^{154} \mathrm{Dy}$	${ }^{160} \mathrm{Er}$	${ }^{164} \mathrm{Er}$	${ }^{162} \mathrm{Yb}$	${ }^{164} \mathrm{Yb}$
19^{-}	-	50	-	-	-	-	-
17^{-}	-	16	-	-	-	-	-
15^{-}	-	6	-	60	24	-	-
13^{-}	14	7	15	18	23	-	17
11^{-}	4	15	5	9	0	10	11
9^{-}	4	0	-	0	-	11	10
7^{-}	0	0	0	-	-	0	0

Above: Branching ratios related to the negative parity bands
interpreted as tetrahedral, inter-band transitions to g.s.band

Possible Further Signs of Tetrahedral Symmetry

Table: Experimental ratios $B(E 2)_{\text {in }} / B(E 1)_{\text {out }} \times 10^{6}$

Spin	${ }^{152} \mathrm{Gd}$	${ }^{156} \mathrm{Gd}$	${ }^{154} \mathrm{Dy}$	${ }^{160} \mathrm{Er}$	${ }^{164} \mathrm{Er}$	${ }^{162} \mathrm{Yb}$	${ }^{164} \mathrm{Yb}$
19^{-}	-	50	-	-	-	-	-
17^{-}	-	16	-	-	-	-	-
15^{-}	-	6	-	60	24	-	-
13^{-}	14	7	15	18	23	-	17
11^{-}	4	15	5	9	0	10	11
9^{-}	4	0	-	0	-	11	10
7^{-}	0	0	0	-	-	0	0

Above: Branching ratios related to the negative parity bands interpreted as tetrahedral, inter-band transitions to g.s.band

Possible Experimental Signs of Tetrahedral Symmetry

Table: Experimental ratios $B(E 2)_{\text {in }} / B(E 1)_{\text {out }} \times 10^{6}$

Spin	${ }^{152} \mathrm{Gd}$	${ }^{156} \mathrm{Gd}$	${ }^{154} \mathrm{Dy}$	${ }^{160} \mathrm{Er}$	${ }^{164} \mathrm{Er}$	${ }^{162} \mathrm{Yb}$	${ }^{164} \mathrm{Yb}$	${ }^{222} \mathrm{Th}$
19^{-}	-	50	-	-	-	-	-	+0.3
17^{-}	-	16	-	-	-	-	-	+0.4
15^{-}	-	6	-	60	24	-	-	+0.4
13^{-}	14	7	15	18	23	-	17	+0.3
11^{-}	4	15	5	9	0	10	11	+0.4
9^{-}	4	0	-	0	-	11	10	+0.4
7^{-}	0	0	0	-	-	0	0	+0.4

Conclusion: The suspected bands in Rare Earth nuclei behave very differently as compared e.g. to 'classical' octupole ${ }^{222}$ Th band!

Possible Experimental Signs of Tetrahedral Symmetry

Table: Experimental ratios $B(E 2)_{\text {in }} / B(E 1)_{\text {out }} \times 10^{6}$

Spin	${ }^{152} \mathrm{Gd}$	${ }^{156} \mathrm{Gd}$	${ }^{154} \mathrm{Dy}$	${ }^{160} \mathrm{Er}$	${ }^{164} \mathrm{Er}$	${ }^{162} \mathrm{Yb}$	${ }^{164} \mathrm{Yb}$	${ }^{222} \mathrm{Th}$
19^{-}	-	50	-	-	-	-	-	+0.3
17^{-}	-	16	-	-	-	-	-	+0.4
15^{-}	-	6	-	60	24	-	-	+0.4
13^{-}	14	7	15	18	23	-	17	+0.3
11^{-}	4	15	5	9	0	10	11	+0.4
9^{-}	4	0	-	0	-	11	10	+0.4
7^{-}	0	0	0	-	-	0	0	+0.4

Conclusion: The suspected bands in Rare Earth nuclei behave very differently as compared e.g. to 'classical' octupole ${ }^{222}$ Th band!

Possible Experimental Signs of Tetrahedral Symmetry

Table: Experimental ratios $B(E 2)_{\text {in }} / B(E 1)_{\text {out }} \times 10^{6}$

Spin	${ }^{152} \mathrm{Gd}$	${ }^{156} \mathrm{Gd}$	${ }^{154} \mathrm{Dy}$	${ }^{160} \mathrm{Er}$	${ }^{164} \mathrm{Er}$	${ }^{162} \mathrm{Yb}$	${ }^{164} \mathrm{Yb}$	${ }^{82} \mathrm{Zr}$
19^{-}	-	50	-	-	-	-	-	-
17^{-}	-	16	-	-	-	-	-	-
15^{-}	-	6	-	60	24	-	-	-
13^{-}	14	7	15	18	23	-	17	-
11^{-}	4	15	5	9	0	10	11	-
9^{-}	4	0	-	0	-	11	10	52
7^{-}	0	0	0	-	-	0	0	4

Conclusion: The suspected bands in the predicted Zirconium region seem to show a tendency similar to that in RE nuclei.

Possible Experimental Signs of Tetrahedral Symmetry

Table: Experimental ratios $B(E 2)_{\text {in }} / B(E 1)_{\text {out }} \times 10^{6}$

Spin	${ }^{152} \mathrm{Gd}$	${ }^{156} \mathrm{Gd}$	${ }^{154} \mathrm{Dy}$	${ }^{160} \mathrm{Er}$	${ }^{164} \mathrm{Er}$	${ }^{162} \mathrm{Yb}$	${ }^{164} \mathrm{Yb}$	${ }^{82} \mathrm{Zr}$
19^{-}	-	50	-	-	-	-	-	-
17^{-}	-	16	-	-	-	-	-	-
15^{-}	-	6	-	60	24	-	-	-
13^{-}	14	7	15	18	23	-	17	-
11^{-}	4	15	5	9	0	10	11	-
9^{-}	4	0	-	0	-	11	10	52
7^{-}	0	0	0	-	-	0	0	4

Conclusion: The suspected bands in the predicted Zirconium region seem to show a tendency similar to that in RE nuclei.

Part IV

Spatial Representation of Nuclear Shells

Spatial Structure of Orbitals (Spherical $\left.{ }^{132} \mathrm{Sn}\right)\left(|\psi(\vec{r})|^{2}\right)$

Limit 80%	Limit ??\%	Limit ??\%	Limit ??\%	Limit ??\%			

Density distribution $\left|\psi_{\pi}(\vec{r})\right|^{2} \geq$ Limit, for $\pi=[2,0,2] 1 / 2$ orbital

Spatial Structure of Orbitals (Spherical $\left.{ }^{132} \mathrm{Sn}\right)\left(|\psi(\vec{r})|^{2}\right)$

Density distribution $\left|\psi_{\pi}(\vec{r})\right|^{2} \geq$ Limit, for $\pi=[2,0,2] 1 / 2$ orbital

Spatial Structure of Orbitals (Spherical $\left.{ }^{132} \mathrm{Sn}\right)\left(|\psi(\vec{r})|^{2}\right)$

Density distribution $\left|\psi_{\pi}(\vec{r})\right|^{2} \geq$ Limit, for $\pi=[2,0,2] 1 / 2$ orbital

Spatial Structure of Orbitals (Spherical $\left.{ }^{132} \mathrm{Sn}\right)\left(|\psi(\vec{r})|^{2}\right)$

Density distribution $\left|\psi_{\pi}(\vec{r})\right|^{2} \geq$ Limit, for $\pi=[2,0,2] 1 / 2$ orbital

Spatial Structure of Orbitals (Spherical $\left.{ }^{132} \mathrm{Sn}\right)\left(|\psi(\vec{r})|^{2}\right)$

Density distribution $\left|\psi_{\pi}(\vec{r})\right|^{2} \geq$ Limit, for $\pi=[2,0,2] 1 / 2$ orbital

Spatial Structure of Orbitals (Spherical $\left.{ }^{132} \mathrm{Sn}\right)\left(|\psi(\vec{r})|^{2}\right)$

Limit 80\%	Limit 50\%	Limit 10\%	Limit 3\%	Limit 1\%
	1			
Limit 20\%	Limit ??\%	Limit ??\%	Limit ??\%	Limit ??\%

Bottom: $\mathrm{N}=3$ shell b-[303]7/2, w-[312]5/2, y-[321]3/2, p-[310]1/2

Spatial Structure of Orbitals (Spherical $\left.{ }^{132} \mathrm{Sn}\right)\left(|\psi(\vec{r})|^{2}\right)$

Bottom: $\mathrm{N}=3$ shell b-[303]7/2, w-[312]5/2, y-[321]3/2, p-[310]1/2

Spatial Structure of Orbitals (Spherical $\left.{ }^{132} \mathrm{Sn}\right)\left(|\psi(\vec{r})|^{2}\right)$

Bottom: $\mathrm{N}=3$ shell b-[303]7/2, w-[312]5/2, y-[321]3/2, p-[310]1/2

Spatial Structure of Orbitals (Spherical $\left.{ }^{132} \mathrm{Sn}\right)\left(|\psi(\vec{r})|^{2}\right)$

Bottom: $\mathrm{N}=3$ shell b-[303]7/2, w-[312]5/2, y-[321]3/2, p-[310]1/2

Spatial Structure of Orbitals (Spherical $\left.{ }^{132} \mathrm{Sn}\right)\left(|\psi(\vec{r})|^{2}\right)$

Bottom: $\mathrm{N}=3$ shell b-[303]7/2, w-[312]5/2, y-[321]3/2, p-[310]1/2

Spatial Structure of $N=3$ Spherical Shell $\left(\left|\psi_{\nu}(\vec{r})\right|^{2}\right)$

${ }^{132} \mathrm{Sn}$: Distributions $\left|\psi_{\nu}(\vec{r})\right|^{2}$ for single proton orbitals. Top $\mathcal{O}_{x z}$, bottom $\mathcal{O}_{y z}$. Proton $e_{\nu} \leftrightarrow[\nu=30,32, \ldots 38]$ for spherical shell

Spatial Structure of $\mathrm{N}=3$ Spherical Shell $\left(\left|\psi_{\nu}(\vec{r})\right|^{2}\right)$

${ }^{132} \mathrm{Sn}$: Distributions $\left|\psi_{\nu}(\vec{r})\right|^{2}$ for single proton orbitals. Top $\mathcal{O}_{x z}$, bottom $\mathcal{O}_{y z}$. Proton $e_{\nu} \leftrightarrow[\nu=40,42, \ldots 48]$ for spherical shell

Spatial Structure of $N=3$ Spherical Shell $\left(\left|\psi_{\nu}(\vec{r})\right|^{2}\right)$

${ }^{132} \mathrm{Sn}$: distributions $\left|\psi_{\nu}(\vec{r})\right|^{2}$ for consecutive pairs of orbitals. Top $\mathcal{O}_{x z}$, bottom $\mathcal{O}_{y z}$. Proton $e_{\nu} \leftrightarrow[\mathrm{n}=30: 32, \ldots 38: 40]$, spherical shell

Spatial Structure of $N=3$ Spherical Shell $\left(\left|\psi_{\nu}(\vec{r})\right|^{2}\right)$

${ }^{132} \mathrm{Sn}$: distributions $\left|\psi_{\nu}(\vec{r})\right|^{2}$ for consecutive pairs of orbitals. Top $\mathcal{O}_{x z}$, bottom $\mathcal{O}_{y z}$. Proton $e_{\nu} \leftrightarrow[n=40: 42, \ldots 48: 50]$, spherical shell

The First Octahedral Shell (20 Nucleons)) $\left(|\psi(\vec{r})|^{2}\right)$

Left: accumulating image of all orbitals; Right: Single Orbital (No.1)

The First Octahedral Shell (20 Nucleons)) $\left(|\psi(\vec{r})|^{2}\right)$

Left: accumulating image of all orbitals; Right: Single Orbital (No.2)

The First Octahedral Shell (20 Nucleons)) $\left(|\psi(\vec{r})|^{2}\right)$

Left: accumulating image of all orbitals; Right: Single Orbital (No.3)

The First Octahedral Shell (20 Nucleons)) $\left(|\psi(\vec{r})|^{2}\right)$

Left: accumulating image of all orbitals; Right: Single Orbital (No.4)

The First Octahedral Shell (20 Nucleons)) $\left(|\psi(\vec{r})|^{2}\right)$

Left: accumulating image of all orbitals; Right: Single Orbital (No.5)

The First Octahedral Shell (20 Nucleons)) $\left(|\psi(\vec{r})|^{2}\right)$

Left: accumulating image of all orbitals; Right: Single Orbital (No.6)

The First Octahedral Shell (20 Nucleons)) $\left(|\psi(\vec{r})|^{2}\right)$

Left: accumulating image of all orbitals; Right: Single Orbital (No.7)

The First Octahedral Shell (20 Nucleons)) $\left(|\psi(\vec{r})|^{2}\right)$

Left: accumulating image of all orbitals; Right: Single Orbital (No.8)

The First Octahedral Shell (20 Nucleons)) $\left(|\psi(\vec{r})|^{2}\right)$

Left: accumulating image of all orbitals; Right: Single Orbital (No.9)

The First Octahedral Shell (20 Nucleons)) $\left(|\psi(\vec{r})|^{2}\right)$

Three space perspectives of the full octahedral shell ($\mathrm{n}=20$ nucleons)

Part V

Nuclear Quantum Rotor

Quantum Systems and Rotation: Preliminaries [1]

Microscopic 'True' H -> All Solutions

Quantum Systems and Rotation: Preliminaries [1]

Microscopic 'True' H -> All Solutions

Alternative:

Mean Field H -> Individual Nucleons

Quantum Systems and Rotation: Preliminaries [1]

Microscopic 'True' H -> All Solutions

Alternative:

Mean Field H -> Individual Nucleons
Alternative:

Collective Rotor H -> Rotational Bands

Quantum Systems and Rotation: Preliminaries [2]

Collective Rotor Hamiltonian

Quantum Systems and Rotation: Preliminaries [2]

Quantum Systems and Rotation: Preliminaries [2]

$$
\begin{aligned}
& \text { Collective Rotor Hamiltonian } \\
& H_{\text {quant }}=H\left(\left\{T_{\lambda \mu}\left(I_{+}, I_{-}, I_{0}\right)\right\}\right) \\
& H_{\text {class }}=1 / 2 \sum_{j} \sum_{k} B_{j k}(\{x, p\}) \dot{\alpha}_{j} \dot{\alpha}_{k}+V(\{\alpha ; x, p\})
\end{aligned}
$$

Mean Field and Implied Rotor Symmetries

- Suppose a system manifests a spontaneous symmetry breaking - We find it convenient to describe it with the help of $H_{m f}(\{6 A\})$
\square

Mean Field and Implied Rotor Symmetries

- Suppose a system manifests a spontaneous symmetry breaking
- We find it convenient to describe it with the help of $H_{m f}(\{6 A\})$
- We wish to stress rotational degrees of freedom by introducing

$$
H_{\text {eff }}(\{6 A\})=H_{\text {rot }}+H_{m f}(\{6 A\})
$$

Mean Field and Implied Rotor Symmetries

- Suppose a system manifests a spontaneous symmetry breaking
- We find it convenient to describe it with the help of $H_{m f}(\{6 A\})$
- We wish to stress rotational degrees of freedom by introducing

$$
H_{\text {eff }}(\{6 A\})=H_{\text {rot }}+H_{m f}(\{6 A\})
$$

Mean Field and Implied Rotor Symmetries

- Suppose a system manifests a spontaneous symmetry breaking
- We find it convenient to describe it with the help of $H_{m f}(\{6 A\})$
- We wish to stress rotational degrees of freedom by introducing

$$
H_{\text {eff }}(\{6 A\})=H_{\text {rot }}+H_{m f}(\{6 A\})
$$

- Thus the symmetries of $H_{\text {eff }}(\{6 A\})$ and of $H_{m f}(\{6 A\})$ coincide

Mean Field and Implied Rotor Symmetries

- Suppose a system manifests a spontaneous symmetry breaking
- We find it convenient to describe it with the help of $H_{m f}(\{6 A\})$
- We wish to stress rotational degrees of freedom by introducing

$$
H_{\text {eff }}(\{6 A\})=H_{\text {rot }}+H_{m f}(\{6 A\})
$$

- Thus the symmetries of $H_{\text {eff }}(\{6 A\})$ and of $H_{m f}(\{6 A\})$ coincide
- Thus symmetries of $H_{r o t}$ and of $H_{m f}(\{6 A\})$ should be the same

What Must - and What Must Not be Attempted

The only direct observables are energy and angular momentum Refusing:

Accepting:

What Must - and What Must Not be Attempted

The only direct observables are energy and angular momentum
Refusing:

- No use of the classical concepts such as 'inertia' or 'rigid body' - No use of derived concepts as VMI or Harris parametrisations

Accepting:

What Must - and What Must Not be Attempted

The only direct observables are energy and angular momentum
Refusing:

- No use of the classical concepts such as 'inertia' or 'rigid body'
- No use of derived concepts as VMI or Harris parametrisations

Accepting:

What Must - and What Must Not be Attempted

The only direct observables are energy and angular momentum
Refusing:

- No use of the classical concepts such as 'inertia' or 'rigid body'
- No use of derived concepts as VMI or Harris parametrisations

Accepting:

What Must - and What Must Not be Attempted

The only direct observables are energy and angular momentum
Refusing:

- No use of the classical concepts such as 'inertia' or 'rigid body'
- No use of derived concepts as VMI or Harris parametrisations

Accepting:

What Must - and What Must Not be Attempted

The only direct observables are energy and angular momentum
Refusing:

- No use of the classical concepts such as 'inertia' or 'rigid body'
- No use of derived concepts as VMI or Harris parametrisations

Accepting:

- Nuclear modelling focuses on the mechanism under interest

What Must - and What Must Not be Attempted

The only direct observables are energy and angular momentum Refusing:

- No use of the classical concepts such as 'inertia' or 'rigid body'
- No use of derived concepts as VMI or Harris parametrisations

Accepting:

- Nuclear modelling focuses on the mechanism under interest
- To study individual-nucleonic features \rightarrow Basis of $\hat{x}_{k} \& \hat{p}_{k}$

What Must - and What Must Not be Attempted

The only direct observables are energy and angular momentum Refusing:

- No use of the classical concepts such as 'inertia' or 'rigid body'
- No use of derived concepts as VMI or Harris parametrisations

Accepting:

- Nuclear modelling focuses on the mechanism under interest
- To study individual-nucleonic features \rightarrow Basis of $\hat{x}_{k} \& \hat{p}_{k}$
- For collective rotation \rightarrow Basis of $\left\{\hat{I}_{+}, \hat{l}_{-}, \hat{I}_{0}\right\} \&\{\alpha, \beta, \gamma\}$

What Must - and What Must Not be Attempted

The only direct observables are energy and angular momentum Refusing:

- No use of the classical concepts such as 'inertia' or 'rigid body'
- No use of derived concepts as VMI or Harris parametrisations

Accepting:

- Nuclear modelling focuses on the mechanism under interest
- To study individual-nucleonic features \rightarrow Basis of $\hat{x}_{k} \& \hat{p}_{k}$
- For collective rotation \rightarrow Basis of $\left\{\hat{I}_{+}, \hat{l}_{-}, \hat{l}_{0}\right\} \&\{\alpha, \beta, \gamma\}$

$$
\text { Basis }\left\{\hat{l}_{+}, \hat{l}_{-}, \hat{l}_{0}\right\}: \hat{T}_{\lambda \mu}(n) \stackrel{\text { df. }}{=} \underbrace{[(\hat{l} \otimes \hat{I}) \otimes \ldots \otimes \hat{l}]_{\lambda \mu}}_{n \text { factors }}
$$

Nuclear Rotor: Collective vs. Intrinsic Hamiltonians

- One of the most successful models of nuclear structure is the rotor model based on the Hamiltonian

$$
\hat{\mathrm{H}}^{[\text {nucl. }]}=\hat{\mathrm{H}}^{[\text {rot. }]}+\hat{\mathrm{H}}^{[\text {intr. }]}+\hat{\mathrm{H}}^{[\text {inter. }]}
$$

- Neglecting the interaction term as an approximation leads to

- Terms $\mathrm{E}^{[\text {intr. }]}$ define the band-head energies

Nuclear Rotor: Collective vs. Intrinsic Hamiltonians

- One of the most successful models of nuclear structure is the rotor model based on the Hamiltonian

$$
\hat{\mathrm{H}}^{[\text {nucl. }]}=\hat{\mathrm{H}}^{[\text {rot. }]}+\hat{\mathrm{H}}^{[\text {intr. }]}+\hat{\mathrm{H}}^{[\text {inter. }]}
$$

- Neglecting the interaction term as an approximation leads to

$$
\phi^{[\text {nucl. }]}=\psi^{[\text {rot. }]} \times \chi^{[\text {intr. }]} \text { and } \mathrm{E}^{[\text {nucl. }]}=\mathrm{E}^{[\text {rot. }]}+\mathrm{E}^{[\text {intr. }]}
$$

- Terms $\mathrm{E}^{[\text {intr. }]}$ define the band-head energies

Nuclear Rotor: Collective vs. Intrinsic Hamiltonians

- One of the most successful models of nuclear structure is the rotor model based on the Hamiltonian

$$
\hat{\mathrm{H}}^{[\text {nucl. }]}=\hat{\mathrm{H}}^{[\text {rot. }]}+\hat{\mathrm{H}}^{[\text {intr. }]}+\hat{\mathrm{H}}^{[\text {inter. }]}
$$

- Neglecting the interaction term as an approximation leads to

$$
\phi^{[\text {nucl. }]}=\psi^{[\text {rot. }]} \times \chi^{[\text {intr. }]} \text { and } \mathrm{E}^{[\text {nucl. }]}=\mathrm{E}^{[\text {rot. }]}+\mathrm{E}^{[\text {intr. }]}
$$

- Terms $\mathrm{E}^{[\text {intr. }]}$ define the band-head energies

Nuclear Rotor: Collective vs. Intrinsic Hamiltonians

- To compare the rotor spectra with experiment, we must shift every band upwards, introducing the band-head energies

- Setting all band-head energies to zero we obtain the so-called reduced form of rotor spectra allowing to discuss properties of $\mathrm{H}^{\text {rot. }}$

Nuclear Rotor: Collective vs. Intrinsic Hamiltonians

- To compare the rotor spectra with experiment, we must shift every band upwards, introducing the band-head energies

- Setting all band-head energies to zero we obtain the so-called reduced form of rotor spectra allowing to discuss properties of $H^{\text {rot. }}$

Ellipsoidal Rotor: Energy Spectrum at $\gamma=0^{\circ}$

To facilitate reading, the spectrum is normalised to the yrast line

Ellipsoidal Rotor: Energy Spectrum at $\gamma=10^{\circ}$

To facilitate reading, the spectrum is normalised to the yrast line

Ellipsoidal Rotor: Energy Spectrum at $\gamma=20^{\circ}$

To facilitate reading, the spectrum is normalised to the yrast line

Ellipsoidal Rotor: Energy Spectrum at $\gamma=30^{\circ}$

To facilitate reading, the spectrum is normalised to the yrast line

Ellipsoidal Rotor: Energy Spectrum at $\gamma=40^{\circ}$

To facilitate reading, the spectrum is normalised to the yrast line

Ellipsoidal Rotor: Energy Spectrum at $\gamma=50^{\circ}$

To facilitate reading, the spectrum is normalised to the yrast line

Ellipsoidal Rotor: Energy Spectrum at $\gamma=60^{\circ}$

To facilitate reading, the spectrum is normalised to the yrast line

Stretched Qudrupole Transitions in the D_{2} Rotor

Observe the domination of $\Delta I=2$ stretched E2 \rightarrow g.s. transitions

Reduced Spectrum of the Tetrahedral-Symmetric Rotor

Spectrum is normalised to 99% of the yrast line

Electro-Magnetic E2 Transitions from $\mathrm{I}_{[9]}[\mathrm{C} 2]=4$ State

Stretched and non-stretched E2 transitions: observe retardation of the $C 2 \rightarrow C 2$ transitions

Electro-Magnetic E2 Transitions from $\mathrm{I}_{[5]}$ [C2] State

Stretched and non-stretched E2 transitions: observed retarded C1 \rightarrow C1 transitions

Electro-Magnetic E2 Transitions from $\mathrm{I}_{[1]}$ [C2] State

Stretched and non-stretched E2 transitions: observed retarded C3 \rightarrow C3 transitions

Electro-Magnetic E2 Transitions - Comparison

Observe the domination of $C i \rightarrow C(k \neq i)$ transitions and retardation of the $\mathrm{Ci} \rightarrow$ Ci type transitions

Summarising the T-Group Selection Rules

- We expect a competition between the minima of tetrahedral and quadrupole-deformed (prolate and/or oblate) shapes
- The decay patterns of the quadrupole bands are very neat; stretched E2-transitions dominate \leftrightarrow a distinct feature

Summarising the T-Group Selection Rules

- We expect a competition between the minima of tetrahedral and quadrupole-deformed (prolate and/or oblate) shapes
- The decay patterns of the quadrupole bands are very neat; stretched E2-transitions dominate \leftrightarrow a distinct feature
- The tetrahedral minima are expected to be 'contaminated' with quadrupole deformation. Contamination with $\beta \sim 0.03$ implies already a significant E1-E2 competition

Summarising the T-Group Selection Rules

- We expect a competition between the minima of tetrahedral and quadrupole-deformed (prolate and/or oblate) shapes
- The decay patterns of the quadrupole bands are very neat; stretched E2-transitions dominate \leftrightarrow a distinct feature
- The tetrahedral minima are expected to be 'contaminated' with quadrupole deformation. Contamination with $\beta \sim 0.03$ implies already a significant E1-E2 competition
cases: tetrahedral symmetry implies three-fold degeneracies

Summarising the T-Group Selection Rules

- We expect a competition between the minima of tetrahedral and quadrupole-deformed (prolate and/or oblate) shapes
- The decay patterns of the quadrupole bands are very neat; stretched E2-transitions dominate \leftrightarrow a distinct feature
- The tetrahedral minima are expected to be 'contaminated' with quadrupole deformation. Contamination with $\beta \sim 0.03$ implies already a significant E1-E2 competition
- There is a degeneracy pattern different in the D_{2} and T-symmetry cases: tetrahedral symmetry implies three-fold degeneracies

E2 Selection - Detailed Predictions [2]

- E2-transitions connect C1, C2 and C3 symmetry states among themselves - and T1-symmetry states among themselves!
- Quadrupole transitions of the type $\mathrm{C} 1 \rightarrow \mathrm{C} 1, \mathrm{C} 2 \rightarrow \mathrm{C} 2$ and $\mathrm{C} 3 \rightarrow \mathrm{C} 3$ are vanishing/negligible

E2 Selection - Detailed Predictions [2]

- E2-transitions connect C1, C2 and C3 symmetry states among themselves - and T1-symmetry states among themselves!
- Quadrupole transitions of the type $\mathrm{C} 1 \rightarrow \mathrm{C} 1, \mathrm{C} 2 \rightarrow \mathrm{C} 2$ and $\mathrm{C} 3 \rightarrow \mathrm{C} 3$ are vanishing/negligible
 roughly $1 / 4$ are clearly non-vanishing

E2 Selection - Detailed Predictions [2]

- E2-transitions connect C1, C2 and C3 symmetry states among themselves - and T1-symmetry states among themselves!
- Quadrupole transitions of the type $\mathrm{C} 1 \rightarrow \mathrm{C} 1, \mathrm{C} 2 \rightarrow \mathrm{C} 2$ and $\mathrm{C} 3 \rightarrow \mathrm{C} 3$ are vanishing/negligible
- Out of $(2 I+1)_{\text {in }} \times(2 I+2)_{\text {fin }}$ transitions a priori possible only roughly $1 / 4$ are clearly non-vanishing

Statistical Wobbling in Space: O_{h}-Case

Spin-Orientation Probability I=9, $n=1$, Representation A2

Statistical Wobbling in Space: O_{h}-Case

Spin-Orientation Probability I=9, $n=2$, T2 (3-fold degenerate)

Statistical Wobbling in Space: O_{h}-Case

Spin-Orientation Probability $I=9, n=3$, T2 (3-fold degenerate)

Statistical Wobbling in Space: O_{h}-Case

Spin-Orientation Probability I=9, $n=4$, T2 (3-fold degenerate)

Statistical Wobbling in Space: O_{h}-Case

Spin-Orientation Probability $I=9, n=5, T 1$ (3-fold degenerate)

Statistical Wobbling in Space: O_{h}-Case

Spin-Orientation Probability $I=9, n=6, T 1$ (3-fold degenerate)

Statistical Wobbling in Space: O_{h}-Case

Spin-Orientation Probability I=9, $n=7$, T1 (3-fold degenerate)

Statistical Wobbling in Space: O_{h}-Case

Spin-Orientation Probability $I=9, n=8$, A1 (1-fold degenerate)

Statistical Wobbling in Space: O_{h}-Case

Spin-Orientation Probability $I=9, n=9, T 1$ (3-fold degenerate)

Statistical Wobbling in Space: O_{h}-Case

Spin-Orientation Probability $I=9, n=10, T 1$ (3-fold degenerate)

Statistical Wobbling in Space: O_{h}-Case

Spin-Orientation Probability $I=9, n=11, T 1$ (3-fold degenerate)

Statistical Wobbling in Space: O_{h}-Case

Spin-Orientation Probability I=9, $n=12, E$ (2-fold degenerate)

Statistical Wobbling in Space: O_{h}-Case

Spin-Orientation Probability I=9, $n=13, E$ (2-fold degenerate)

Part VI

Summary \& Perspectives

Summary

Search for the high-rank symmetries in nuclei presents a genuinely new physics challenge in nuclear structure domain for large facilities

(1) Tetrahedral symmetry in nuclei is predicted as an abundant phenomenon in numerous islands throughout the Periodic Table

Summary

Search for the high-rank symmetries in nuclei presents a genuinely new physics challenge in nuclear structure domain for large facilities
(1) Tetrahedral symmetry in nuclei is predicted as an abundant phenomenon in numerous islands throughout the Periodic Table
(2) Most of the nuclei in question are either neutron rich or proton rich and thus of interest for exotic-nuclei projects

Summary

Search for the high-rank symmetries in nuclei presents a genuinely new physics challenge in nuclear structure domain for large facilities
(1) Tetrahedral symmetry in nuclei is predicted as an abundant phenomenon in numerous islands throughout the Periodic Table
2 Most of the nuclei in question are either neutron rich or proton rich and thus of interest for exotic-nuclei projects

3 Paradoxally, the high-level symmetries have most likely been seen already with 'old' non-existing facilities

Summary

Search for the high-rank symmetries in nuclei presents a genuinely new physics challenge in nuclear structure domain for large facilities
(1) Tetrahedral symmetry in nuclei is predicted as an abundant phenomenon in numerous islands throughout the Periodic Table
(2) Most of the nuclei in question are either neutron rich or proton rich and thus of interest for exotic-nuclei projects
3 Paradoxally, the high-level symmetries have most likely been seen already with 'old' non-existing facilities - not realising it! nuclei that can be studied with relatively modest facilities

Summary

Search for the high-rank symmetries in nuclei presents a genuinely new physics challenge in nuclear structure domain for large facilities
(1) Tetrahedral symmetry in nuclei is predicted as an abundant phenomenon in numerous islands throughout the Periodic Table
(2) Most of the nuclei in question are either neutron rich or proton rich and thus of interest for exotic-nuclei projects
3 Paradoxally, the high-level symmetries have most likely been seen already with 'old' non-existing facilities - not realising it!
4. The tetrahedral Rare-Earth nuclei are about the only non-exotic nuclei that can be studied with relatively modest facilities
\qquad

Summary

Search for the high-rank symmetries in nuclei presents a genuinely new physics challenge in nuclear structure domain for large facilities
(1) Tetrahedral symmetry in nuclei is predicted as an abundant phenomenon in numerous islands throughout the Periodic Table
(2) Most of the nuclei in question are either neutron rich or proton rich and thus of interest for exotic-nuclei projects
3 Paradoxally, the high-level symmetries have most likely been seen already with 'old' non-existing facilities - not realising it!
4. The tetrahedral Rare-Earth nuclei are about the only non-exotic nuclei that can be studied with relatively modest facilities
(5) The latter can be seen as a cadeau du ciel: allowing to learn the new physics 'inexpensively'

Perspectives: COLLABORATION 'TETRANUC'

A few points about the TETRANUC collaboration:

Goal: Demonstrate the existence and study the structure of tetrahedral nuclei

Perspectives: COLLABORATION 'TETRANUC'

A few points about the TETRANUC collaboration:

Goal: Demonstrate the existence and study the structure of tetrahedral nuclei

Perspectives: COLLABORATION 'TETRANUC'

A few points about the TETRANUC collaboration:

> Goal: Demonstrate the existence and study the structure of tetrahedral nuclei at Ganil with Spiral 1 and 2

Perspectives: COLLABORATION 'TETRANUC'

A few points about the TETRANUC collaboration:
Goal: Demonstrate the existence and study the structure of tetrahedral nuclei at Ganil with Spiral 1 and 2

Laboratories today: Strasbourg, Ganil, Orsay, GSI-Darmstad, Cracow, Legnaro, Madrid, Surrey and Warsaw

Perspectives: COLLABORATION 'TETRANUC'

A few points about the TETRANUC collaboration:

> Goal: Demonstrate the existence and study the structure of tetrahedral nuclei at Ganil with Spiral 1 and 2

Laboratories today: Strasbourg, Ganil, Orsay, GSI-Darmstad, Cracow, Legnaro, Madrid, Surrey and Warsaw

Number of participants:

Perspectives: COLLABORATION 'TETRANUC'

A few points about the TETRANUC collaboration:

> Goal: Demonstrate the existence and study the structure of tetrahedral nuclei at Ganil with Spiral 1 and 2

Laboratories today: Strasbourg, Ganil, Orsay, GSI-Darmstad, Cracow, Legnaro, Madrid, Surrey and Warsaw

New members are very welcome!

Number of participants:

Perspectives: COLLABORATION 'TETRANUC'

A few points about the TETRANUC collaboration:

> Goal: Demonstrate the existence and study the structure of tetrahedral nuclei at Ganil with Spiral 1 and 2

Laboratories today: Strasbourg, Ganil, Orsay, GSI-Darmstad, Cracow, Legnaro, Madrid, Surrey and Warsaw

New members are very welcome!

Number of participants:
30 persons:

Perspectives: COLLABORATION 'TETRANUC'

A few points about the TETRANUC collaboration:

> Goal: Demonstrate the existence and study the structure of tetrahedral nuclei at Ganil with Spiral 1 and 2

Laboratories today: Strasbourg, Ganil, Orsay, GSI-Darmstad, Cracow, Legnaro, Madrid, Surrey and Warsaw

New members are very welcome!

Number of participants:
30 persons:

Perspectives: COLLABORATION 'TETRANUC'

A few points about the TETRANUC collaboration:

> Goal: Demonstrate the existence and study the structure of tetrahedral nuclei at Ganil with Spiral 1 and 2

Laboratories today: Strasbourg, Ganil, Orsay, GSI-Darmstad, Cracow, Legnaro, Madrid, Surrey and Warsaw

New members are very welcome!

Number of participants: 30 persons: 25 experimentalists

Perspectives: COLLABORATION 'TETRANUC'

A few points about the TETRANUC collaboration:

> Goal: Demonstrate the existence and study the structure of tetrahedral nuclei at Ganil with Spiral 1 and 2

Laboratories today: Strasbourg, Ganil, Orsay, GSI-Darmstad, Cracow, Legnaro, Madrid, Surrey and Warsaw

New members are very welcome!

Number of participants:
30 persons: 25 experimentalists and 5 theoreticians

Most Urgent: First Proposals to Study Branching Ratios

A few points about the TETRANUC collaboration:

The LOGO (!) of the new collaboration suggests our principal interest:

[^0]
Most Urgent: First Proposals to Study Branching Ratios

A few points about the TETRANUC collaboration:

The LOGO (!) of the new collaboration suggests our principal interest:

First proposals: To study the suspect tetrahedral hand in ${ }^{156} \mathrm{Gd}$. Using known transition energies aim at as precise as possible $B(E 2) / B(E 1)$ ratios, also Q_{2}

Most Urgent: First Proposals to Study Branching Ratios

A few points about the TETRANUC collaboration:

The LOGO (!) of the new collaboration suggests our principal interest:
Find for the first time the experimental evidence of the tetrahedral symmetry in subatomic physics.

First proposals: To study the suspect tetrahedral band in ${ }^{156} \mathrm{Gd}$. Using known transition energies aim at as precise as possible $B(E 2) / B(E 1)$ ratios, also Q_{2}

Figure: Logo by N. Dubray

Most Urgent: First Proposals to Study Branching Ratios

A few points about the TETRANUC collaboration:

The LOGO (!) of the new collaboration suggests our principal interest:
Find for the first time the experimental evidence of the tetrahedral symmetry in subatomic physics.

First proposals: To study the suspect tetrahedral band in ${ }^{156} \mathrm{Gd}$. Using known transition energies aim at as precise as possible $B(E 2) / B(E 1)$ ratios, also Q_{2}.

Figure: Logo by N. Dubray

Most Urgent: First Proposals to Study Branching Ratios

A few points about the TETRANUC collaboration:

The LOGO (!) of the new collaboration suggests our principal interest:
Find for the first time the experimental evidence of the tetrahedral symmetry in subatomic physics.

First proposals: To study the suspect tetrahedral band in ${ }^{156} \mathrm{Gd}$. Using known transition energies aim at as precise as possible $B(E 2) / B(E 1)$ ratios, also Q_{2}.

Figure: Logo by N. Dubray

In Perspective:

(1) From the basic physics point of view the tetrahedral symmetry in sub-atomic physics seems comparably or more fundamental and/or interesting than e.g. super-deformation
... and nuclei placed around the tetrahedral magicity centres:

- in many cases the nuclei 'to the east' and/or 'to the west' from those centres

In Perspective:

(1) From the basic physics point of view the tetrahedral symmetry in sub-atomic physics seems comparably or more fundamental and/or interesting than e.g. super-deformation
(2) Measurements will involve:
a. Life-times (to establish weak quadrupole moments);
b. Electromagnetic transition ratios e.g. $B(E 2) / B(E 1)$...
... and nuclei placed around the tetrahedral magicity centres:

- in many cases the nuclei 'to the east' and/or 'to the west' from those centres

In Perspective:

(1) From the basic physics point of view the tetrahedral symmetry in sub-atomic physics seems comparably or more fundamental and/or interesting than e.g. super-deformation
(2) Measurements will involve:
a. Life-times (to establish weak quadrupole moments);
b. Electromagnetic transition ratios e.g. $B(E 2) / B(E 1)$...

3 ... and nuclei placed around the tetrahedral magicity centres:

$$
\begin{aligned}
& { }_{32}^{64} G e_{32}, \quad{ }_{32}^{72} G e_{40},{ }_{32}^{88} G e_{56},{ }_{40}^{80} Z r_{40},{ }_{40}^{110} Z r_{70},{ }_{56}^{112} B a_{56}, \\
& { }_{56}, ~ B a_{70},{ }_{56}^{146} B a_{90},{ }_{64}^{134} G d_{70},{ }_{64}^{154} G d_{90},{ }_{70}^{160} Y b_{90},{ }_{90}^{222} T h_{132}
\end{aligned}
$$

- in many cases the nuclei 'to the east' and/or 'to the west' from those centres

In Perspective:

(1) From the basic physics point of view the tetrahedral symmetry in sub-atomic physics seems comparably or more fundamental and/or interesting than e.g. super-deformation
(2) Measurements will involve:
a. Life-times (to establish weak quadrupole moments);
b. Electromagnetic transition ratios e.g. $B(E 2) / B(E 1)$...

3 ... and nuclei placed around the tetrahedral magicity centres:

$$
\begin{aligned}
& { }_{32}^{64} G e_{32}, \quad{ }_{32}^{72} G e_{40},{ }_{32}^{88} G e_{56},{ }_{40}^{80} Z r_{40},{ }_{40}^{110} Z r_{70},{ }_{56}^{112} B a_{56}, \\
& { }_{56}, ~ B a_{70},{ }_{56}^{146} B a_{90},{ }_{54}^{134} G d_{70},{ }_{64}^{154} G d_{90},{ }_{70}^{160} Y b_{90},{ }_{90}^{222} T h_{132}
\end{aligned}
$$

- in many cases the nuclei 'to the east' and/or 'to the west' from those centres

[^0]: possible $B(E 2) / B(E 1)$ ratios, also Q_{2}

