Tetrahedral and Octahedral Symmetries in Nuclei

Jerzy DUDEK

Institute for Subatomic Research and University of Strasbourg I

29th September 2006

COLLABORATORS:

Noêl DUBRAY Dominique CURIEN Jacek DOBACZEWSKI Andrzej GÓŹDŹ Vincent PANGON Nicolas SCHUNCK Przemek OLBRATOWSKI

Part I

Introduction: Symmetry and Nuclear Stability

Gaps and Stability Symmetry and Gaps

Nuclear Stability and Gaps in the Spectra [1]

- Here and in the following we use the nuclear mean-field approach
- The deformation-parameter axis represents often *many independent* deformations of the mean field
- The presence of the sufficiently strong gaps at Fermi levels leads to shape coexistence
- In what follows we focus on shell effects generated by high symmetry point-groups (see below)

Gaps and Stability Symmetry and Gaps

Nuclear Stability and Gaps in the Spectra [1]

- Here and in the following we use the nuclear mean-field approach
- The deformation-parameter axis represents often *many independent* deformations of the mean field
- The presence of the sufficiently strong gaps at Fermi levels leads to shape coexistence
- In what follows we focus on shell effects generated by high symmetry point-groups (see below)

Gaps and Stability Symmetry and Gaps

Nuclear Stability and Gaps in the Spectra [1]

- Here and in the following we use the nuclear mean-field approach
- The deformation-parameter axis represents often *many independent* deformations of the mean field
- The presence of the sufficiently strong gaps at Fermi levels leads to shape coexistence
- In what follows we focus on shell effects generated by high symmetry point-groups (see below)

Gaps and Stability Symmetry and Gaps

Nuclear Stability and Gaps in the Spectra [1]

- Here and in the following we use the nuclear mean-field approach
- The deformation-parameter axis represents often *many independent* deformations of the mean field
- The presence of the sufficiently strong gaps at Fermi levels leads to shape coexistence
- In what follows we focus on shell effects generated by high symmetry point-groups (see below)

Single-Particle Gaps and Underlying Symmetries [1]

- One of the first mechanisms used in nuclear physics is related to the Harmonic Oscillator 'rule': $\omega_x : \omega_y : \omega_z = k : m : n$
- This mechanism manifests (is a special case) of SU₃ symmetry

Single-Particle Gaps and Underlying Symmetries [1]

- One of the first mechanisms used in nuclear physics is related to the Harmonic Oscillator 'rule': $\omega_x : \omega_y : \omega_z = k : m : n$
- This mechanism manifests (is a special case) of SU₃ symmetry

Single Particle Gaps and Underlying Symmetries [1]

- One of the first mechanisms used in nuclear physics is related to the Harmonic Oscillator 'rule': $\omega_x : \omega_y : \omega_z = k : m : n$
- This mechanism manifests (is a special case) of SU₃ symmetry

Jerzy DUDEK

Tetrahedral and Octahedral Symmetries in Nuclei

Gaps and Stability Symmetry and Gaps

Single Particle Gaps and Underlying Symmetries [1]

- One of the first mechanisms used in nuclear physics is related to the Harmonic Oscillator 'rule': $\omega_x : \omega_y : \omega_z = k : m : n$
- This mechanism manifests (is a special case) of SU₃ symmetry

Jerzy DUDEK

Tetrahedral and Octahedral Symmetries in Nuclei

- Both spherical gaps and deformed oscillator gaps arise because of the degeneracy of levels
- How to optimise the mathematical conditions so that the degeneracies are the strongest possible?
- The answer is:

- Both spherical gaps and deformed oscillator gaps arise because of the degeneracy of levels
- How to optimise the mathematical conditions so that the degeneracies are the strongest possible?
- The answer is:

Use the group- and the group-representation theory

- Both spherical gaps and deformed oscillator gaps arise because of the degeneracy of levels
- How to optimise the mathematical conditions so that the degeneracies are the strongest possible?
- The answer is:

Use the group- and the group-representation theory!

- Both spherical gaps and deformed oscillator gaps arise because of the degeneracy of levels
- How to optimise the mathematical conditions so that the degeneracies are the strongest possible?
- The answer is:

Use the group- and the group-representation theory!

- Given Hamiltonian H and a group: $\mathcal{G} = \{\mathcal{O}_1, \mathcal{O}_2, \dots, \mathcal{O}_f\}$
- Assume that $\mathcal G$ is a symmetry group of H i.e

 $[M, C_{ij}] = 0$ with $k = 1, 2, \dots, \ell$

- Let irreducible representations of G be $\{\mathcal{R}_1, \mathcal{R}_2, \ldots, \mathcal{R}_r\}$
- Let their dimensions be $\{d_1, d_2, \ldots, d_r\}$, respectively
- Then the eigenvalues $\{\varepsilon_{
 u}\}$ of the problem

- Given Hamiltonian H and a group: $\mathcal{G} = \{\mathcal{O}_1, \mathcal{O}_2, \ \dots \ \mathcal{O}_f\}$
- Assume that \mathcal{G} is a symmetry group of H i.e.

- Let irreducible representations of G be $\{\mathcal{R}_1, \mathcal{R}_2, \ldots, \mathcal{R}_r\}$
- Let their dimensions be $\{d_1, d_2, \ldots, d_r\}$, respectively
- Then the eigenvalues $\{arepsilon_
 u\}$ of the problem

- Given Hamiltonian H and a group: $\mathcal{G} = \{\mathcal{O}_1, \mathcal{O}_2, \dots, \mathcal{O}_f\}$
- Assume that \mathcal{G} is a symmetry group of H i.e.

- Let irreducible representations of G be $\{\mathcal{R}_1, \mathcal{R}_2, \ldots, \mathcal{R}_r\}$
- Let their dimensions be $\{d_1, d_2, \ldots, d_r\}$, respectively
- Then the eigenvalues $\{arepsilon_
 u\}$ of the problem

- Given Hamiltonian H and a group: $\mathcal{G} = \{\mathcal{O}_1, \mathcal{O}_2, \ \dots \ \mathcal{O}_f\}$
- Assume that \mathcal{G} is a symmetry group of H i.e.

- Let irreducible representations of G be $\{\mathcal{R}_1, \mathcal{R}_2, \ \dots, \ \mathcal{R}_r\}$
- Let their dimensions be $\{d_1, d_2, \ldots, d_r\}$, respectively
- Then the eigenvalues $\{arepsilon_
 u\}$ of the problem

appear in multiplets d_1 -fold, d_2 -fold ... degenerate

- Given Hamiltonian H and a group: $\mathcal{G} = \{\mathcal{O}_1, \mathcal{O}_2, \ \dots \ \mathcal{O}_f\}$
- Assume that \mathcal{G} is a symmetry group of H i.e.

- Let irreducible representations of G be $\{\mathcal{R}_1, \mathcal{R}_2, \ \dots, \ \mathcal{R}_r\}$
- Let their dimensions be $\{d_1, d_2, \ldots, d_r\}$, respectively
- Then the eigenvalues $\{arepsilon_
 u\}$ of the problem

appear in multiplets d_1 -fold, d_2 -fold ... degenerate

Gaps and Stability Symmetry and Gaps

What Are the Nuclear High-Level Symmetry Groups?

32 Point Groups: Subgroups

Figure: *Cubic group structure*

Dashed lines indicate that the subgroup marked is not invariant

Trivial groups: $C_1 \equiv \{\mathbb{I}\}, C_s \equiv \{\mathbb{I}, \hat{\sigma}\}$ and $C_i \equiv \{\mathbb{I}, \hat{\pi}\}$

Only the double groups O_h^D and T_d^D lead to <u>four-fold</u> degeneracies in the nucleonic spectra - all the others cause <u>merely two-fold</u> degeneracies. This is why the former are called *high-level* ...

Irreducible Representations and Gaps - Nuclear Context

- The nuclear potential depth is approximately constant it depends only weakly on the particle numbers and on deformation
- The higher the dimensions of the irreps. \rightarrow the higher the degeneracies of s.p. levels \rightarrow the larger the gaps, on the average
- The highest dimensions of the irreducible representations correspond to the *Double* Tetrahedral & Octahedral Groups (d = 4)

Three 'repartitions' of single particle levels into various irreducible repres.: Left: one two-dimensional irrep. Middle: two two-dimensional irreps. Right: one two-dimensional and 2 four-dimensional irreps.

Tetrahedral and Octahedral Symmetries in Nuclei

Symmetries and Gaps in Nuclear Context: Summary

To increase the chances of having big gaps in the spectra we either look for point groups with high dimension irreps or with many irreps

Symmetries and Gaps in Nuclear Context: Summary

To increase the chances of having big gaps in the spectra we either look for point groups with high dimension irreps or with many irreps

The above guide-lines (not theorems) are confirmed by calculations

Symmetries and Gaps in Nuclear Context: Summary

To increase the chances of having big gaps in the spectra we either look for point groups with high dimension irreps or with many irreps

The above guide-lines (not theorems) are confirmed by calculations

Mean Field with O and T Symmetries

Part II

Octahedral and Tetrahedral Nuclei

Introducing Nuclear Octahedral Symmetry

Let us recall one of the magic forms introduced long time by Plato. The implied symmetry leads to the *octahedral group* denoted O_h

An octahedron has 8 equal walls. Its shape is invariant with respect to 48 symmetry elements that include inversion. However, the nuclear surface cannot be represented in the form of a diamond $\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow$

... but rather in a form of a regular spherical harmonic expansion:

$$\mathcal{R}(\vartheta, arphi) = \mathcal{R}_0 \, c(\{lpha\}) [1 + \sum_{\lambda}^{\lambda_{max}} \sum_{\mu = -\lambda}^{\lambda} lpha_{\lambda,\mu} \, Y_{\lambda,\mu}(\vartheta, arphi)]$$

Jerzy DUDEK

Tetrahedral and Octahedral Symmetries in Nuclei

A Basis for Octahedral Symmetry

Only special combinations of spherical harmonics may form a basis for surfaces with octahedral symmetry:

A Basis for Octahedral Symmetry

Only special combinations of spherical harmonics may form a basis for surfaces with octahedral symmetry:

A Basis for Octahedral Symmetry

Only special combinations of spherical harmonics may form a basis for surfaces with octahedral symmetry:

A Basis for Octahedral Symmetry

Only special combinations of spherical harmonics may form a basis for surfaces with octahedral symmetry:

Mean Field with O and T Symmetries

Octahedral Symmetry Tetrahedral Symmetry

Nuclear Octahedral Shapes - 3D Examples

Illustrations below show the octahedral-symmetric surfaces at three increasing values of rank $\lambda = 4$ deformations o_4 : 0.1, 0.2 and 0.3:

Figure: $o_4 = 0.1$ Figure: $o_4 = 0.2$ Figure: $o_4 = 0.3$ Recall: $\alpha_{40} \equiv o_4;$ $\alpha_{4,\pm 4} \equiv \pm \sqrt{\frac{5}{14}} \cdot o_4$

Mean Field with O and T Symmetries

Octahedral Symmetry Tetrahedral Symmetry

Among the Highest Symmetries in Molecular Physics

Group T_d - Molecule: [CH₄]

Group O_h - Molecule: [SF₆]

Group D_{6d} - Mol.: [Cr(C₆H₆)₂]

From J. Goss, University of Newcastle

Jerzy DUDEK

Group I_h - Molecule: $[C_{60}]$

Tetrahedral and Octahedral Symmetries in Nuclei

Nuclear Octahedral Shapes - Neutron Spectra

Double group O_h^D has four 2-dimensional and two 4-dimensional irreducible representations \rightarrow six distinct families of levels

Figure: Full lines correspond to 4-dimensional irreducible representations - they are marked with double Nilsson labels. Observe huge gap at N=114.

Jerzy DUDEK

Tetrahedral and Octahedral Symmetries in Nuclei

Nuclear Octahedral Shapes - Proton Spectra

Double group O_h^D has four 2-dimensional and two 4-dimensional irreducible representations \rightarrow six distinct families of levels

Figure: Full lines correspond to 4-dimensional irreducible representations - they are marked with double Nilsson labels. Observe huge gap at Z=70.

Jerzy DUDEK

Discrete Symmetries in Nuclei

Let us recall one of the magic forms introduced long time by Plato. The implied symmetry leads to the *tetrahedral group* denoted T_d

A tetrahedron has four equal walls. Its shape is invariant with respect to 24 symmetry elements. Tetrahedron is <u>not</u> invariant with respect to the inversion. Of course nuclei cannot be represented by a sharp-edge pyramid

... but rather in a form of a regular spherical harmonic expansion:

$$\mathcal{R}(artheta,arphi) = \mathsf{R}_{\mathsf{0}} \, \mathsf{c}(\{lpha\}) [1 + \sum_{\lambda}^{\lambda_{max}} \sum_{\mu=-\lambda}^{\lambda} lpha_{\lambda,\mu} \, Y_{\lambda,\mu}(artheta,arphi)]$$

Jerzy DUDEK

Tetrahedral and Octahedral Symmetries in Nuclei
Octahedral Symmetry Tetrahedral Symmetry

Discrete Symmetries in Nuclei

Let us recall one of the magic forms introduced long time by Plato. The implied symmetry leads to the *tetrahedral group* denoted T_d

A tetrahedron has four equal walls. Its shape is invariant with respect to 24 symmetry elements. Tetrahedron is <u>not</u> invariant with respect to the inversion. Of course nuclei cannot be represented by a sharp-edge pyramid

... but rather in a form of a regular spherical harmonic expansion:

$$\mathcal{R}(\vartheta, \varphi) = R_0 \, c(\{lpha\}) [1 + \sum_{\lambda}^{\lambda_{max}} \sum_{\mu=-\lambda}^{\lambda} lpha_{\lambda,\mu} \, Y_{\lambda,\mu}(\vartheta, \varphi)]$$

Jerzy DUDEK

Tetrahedral Symmetry in Heavy Zr Nuclei

The Table below shows the HFB energies relative to the energy of the tetrahedral minimum. Calculations with SLy4 parametrisation. Energy in MeV.

Nucleus	¹⁰⁴ Zr	¹⁰⁶ Zr	¹⁰⁸ Zr	¹¹⁰ Zr	¹¹² Zr
Tetrahedral	+0.00	+0.00	+0.00	+0.00	+0.00
Spherical	+0.22	+0.29	+0.39		
Oblate	-1.57	-1.52	-1.10	+0.07	+0.30
Prolate	-2.07	-1.76	-0.68		+1.01

Conclusion: In some exotic nuclei the ground-state energies may correspond to the tetrahedral minima

Part III

Tetrahedral Rare Earths - A Test-Ground

- The tetrahedral/octahedral symmetric nuclei are predicted around magic closures $\{Z_t, N_t\} = \{32, 40, 56, 64, 70, 90, 132 136\}$
- ... and more precisely around the following nuclei:
- The majority of these are either proton-rich or neutron-rich
- An important exception is the God's gift: Rare Earth Region around Gd and Yb mass A~150-160 nuclei
- Therefore after having examined this 'easier' range the majority of the physics in question corresponds to the realm of Spiral 2

- The tetrahedral/octahedral symmetric nuclei are predicted around magic closures $\{Z_t, N_t\} = \{32, 40, 56, 64, 70, 90, 132 136\}$
- ... and more precisely around the following nuclei:
- The majority of these are either proton-rich or neutron-rich
- \bullet An important exception is the God's gift: Rare Earth Region around Gd and Yb mass A ${\sim}150{\text{-}}160$ nuclei
- Therefore after having examined this 'easier' range the majority of the physics in question corresponds to the realm of Spiral 2

- The tetrahedral/octahedral symmetric nuclei are predicted around magic closures $\{Z_t, N_t\} = \{32, 40, 56, 64, 70, 90, 132 136\}$
- ... and more precisely around the following nuclei:

- The majority of these are either proton-rich or neutron-rich
- \bullet An important exception is the God's gift: Rare Earth Region around Gd and Yb mass A ${\sim}150{\text{-}}160$ nuclei
- Therefore after having examined this 'easier' range the majority of the physics in question corresponds to the realm of Spiral 2

- The tetrahedral/octahedral symmetric nuclei are predicted around magic closures $\{Z_t, N_t\} = \{32, 40, 56, 64, 70, 90, 132 136\}$
- ... and more precisely around the following nuclei:

- The majority of these are either proton-rich or neutron-rich
- An important exception is the God's gift: Rare Earth Region around Gd and Yb mass A $\sim\!150\text{-}160$ nuclei
- Therefore after having examined this 'easier' range the majority of the physics in question corresponds to the realm of Spiral 2

- The tetrahedral/octahedral symmetric nuclei are predicted around magic closures $\{Z_t, N_t\} = \{32, 40, 56, 64, 70, 90, 132 136\}$
- ... and more precisely around the following nuclei:

- The majority of these are either proton-rich or neutron-rich
- An important exception is the God's gift: Rare Earth Region around Gd and Yb mass A $\sim\!150\text{-}160$ nuclei
- Therefore after having examined this 'easier' range the majority of the physics in question corresponds to the realm of Spiral 2

Total Energies Experiment

Tetrahedral vs. Ground-State Configurations

Tetrahedral minima compete with the prolate ground-state minima Tetrahedral Symmetry / Instability

Figure: Barriers between the tetrahedral and quadrupole-deformed minima.

Jerzy DUDEK

Total Energies Experiment

Tetrahedral vs. Ground-State Configurations

Tetrahedral minima compete with the prolate ground-state minima Tetrahedral Symmetry / Instability

Figure: Barriers between the tetrahedral and quadrupole-deformed minima.

Jerzy DUDEK

Total Energies Experiment

Tetrahedral vs. Ground-State Configurations

Tetrahedral minima compete with the prolate ground-state minima Tetrahedral Symmetry / Instability

Figure: Barriers between the tetrahedral and quadrupole-deformed minima.

Jerzy DUDEK

Total Energies Experiment

Tetrahedral Shapes in Rare Earth Nuclei - Stability

The chances to observe the new symmetries in experiment increase with the increasing heights of the barriers surrounding these minima

Figure: Barriers between the tetrahedral and quadrupole-deformed minima. Brick size 100 keV; this corresponds to the highest barriers \sim 2.5 MeV.

• Conclusion: The highest barriers correspond to the Gadolinum and Ytterbium nuclei with $N \sim 90$.

Total Energies Experiment

Tetrahedral Shapes in Rare Earth Nuclei - Stability

The chances to observe the new symmetries in experiment increase with the increasing heights of the barriers surrounding these minima

Figure: Barriers between the tetrahedral and quadrupole-deformed minima. Brick size 100 keV; this corresponds to the highest barriers \sim 2.5 MeV.

• Conclusion: The highest barriers correspond to the Gadolinum and Ytterbium nuclei with $N \sim 90$.

Total Energies Experiment

Tetrahedral vs. Octahedral Symmetry: Big Gains

Tetrahedral and octahedral deformations combine lowering energies Tetrahedral Symmetry / Instability

Figure: The octahedral deformation may provide down to 1 MeV extra.

Total Energies Experiment

Tetrahedral vs. Octahedral Symmetry: Big Gains

Tetrahedral and octahedral deformations combine lowering energies Tetrahedral Symmetry / Instability

Figure: The octahedral deformation may provide down to 1 MeV extra.

Total Energies Experiment

Tetrahedral vs. Octahedral Symmetry: Big Gains

Tetrahedral and octahedral deformations combine lowering energies Tetrahedral Symmetry / Instability

Figure: The octahedral deformation may provide down to 1 MeV extra.

Jerzy DUDEK

Total Energies Experiment

Tetrahedral vs. Octahedral Symmetry: Big Gains

Tetrahedral and octahedral deformations combine lowering energies Tetrahedral Symmetry / Instability

Figure: The octahedral deformation may provide down to 1 MeV extra.

Jerzy DUDEK

Total Energies Experiment

Tetrahedral vs. Normal-Deformed Energy Differences

The chances to observe the new symmetries in experiment increase with the decreasing energy difference: $(E_t - E_{nd})$

Figure: Energy difference $\Delta E = (E_t - E_{nd})$. Brick size 1 MeV.

Conclusion: The best chances correspond to the N~90-92 isotones.

Total Energies Experiment

Tetrahedral vs. Normal-Deformed Energy Differences

The chances to observe the new symmetries in experiment increase with the decreasing energy difference: $(E_t - E_{nd})$

Figure: Energy difference $\Delta E = (E_t - E_{nd})$. Brick size 1 MeV.

• Conclusion: The best chances correspond to the N~90-92 isotones.

Total Energies Experiment

About Enormous Instability of Spherical Shapes

Let us examine the energy gain in spherical nuclei by allowing them to get tetrahedral and/or octahedral deformed

Figure: Energy difference $\Delta E \equiv (E_{sph} - E_t)$ between the spherical and tetrahedral minima. Brick-size 500 keV.

• Conclusion: *The majority of the Rare Earth area has 'unstable sphericity'*! In other words: tetrahedral/prolate coexisting minima.

Total Energies Experiment

About Enormous Instability of Spherical Shapes

Let us examine the energy gain in spherical nuclei by allowing them to get tetrahedral and/or octahedral deformed

Figure: Energy difference $\Delta E \equiv (E_{sph} - E_t)$ between the spherical and tetrahedral minima. Brick-size 500 keV.

• Conclusion: The majority of the Rare Earth area has 'unstable sphericity'! In other words: tetrahedral/prolate coexisting minima.

Total Energies Experiment

Tetrahedral/Octahedral Shapes Have No Q₂-Moments

At the exact tetrahedral symmetry the quadrupole moments vanish.

Figure: Equilibrium shape $t_1 = 0.15$.

Total Energies Experiment

Tetrahedral/Octahedral Shapes Have No Q₂-Moments

At the exact tetrahedral symmetry the quadrupole moments vanish.

However, the induced dipole moments are calculated to be sizeable.

Jerzy DUDEK

Total Energies Experiment

Tetrahedral/Octahedral Shapes Have No Q₂-Moments

At the exact tetrahedral symmetry the quadrupole moments vanish.

However, the induced dipole moments are calculated to be sizeable.

Comparison Theory - Experiment: Alignments

Three hypotheses: 1. Tetrahedral and Octahedral \leftrightarrow (microscopic); 2. Tetrahedral and Octahedral + Zero-Point Motion ($\alpha_{20}^{pol.} = 0.07$); 3. Prolate ('standard')

Total Energies Experiment

Comparison Theory - Experiment: B(E2)/B(E1)

Comparison between the mean-field predictions and experiment

Total Energies Experiment

Possible Further Signs of Tetrahedral Symmetry

Table: Experimental ratios $B(E2)_{in}/B(E1)_{out} \times 10^6$

Spin	¹⁵² Gd	¹⁵⁶ Gd	¹⁵⁴ Dy	¹⁶⁰ Er	¹⁶⁴ Er	¹⁶² Yb	¹⁶⁴ Yb
19-	-	50	-	-	-	-	-
17-	-	16		-	-		-
15-	-	6		60	24		-
13-	14	7	15	18	23		17
11-	4	15	5	9	0	10	11
9-	4	0		0	-	11	10
7-	0	0	0	-	-	0	0

Above: Branching ratios related to the negative parity bands interpreted as tetrahedral, inter-band transitions to g.s.band

Total Energies Experiment

Possible Further Signs of Tetrahedral Symmetry

Table: Experimental ratios $B(E2)_{in}/B(E1)_{out} \times 10^6$

Spin	¹⁵² Gd	¹⁵⁶ Gd	¹⁵⁴ Dy	¹⁶⁰ Er	¹⁶⁴ Er	¹⁶² Yb	¹⁶⁴ Yb
19-	-	50	-	-	-	-	-
17-	-	16	-	-	-		-
15-	-	6	-	60	24		-
13-	14	7	15	18	23		17
11-	4	15	5	9	0	10	11
9-	4	0	-	0	-	11	10
7-	0	0	0	-	-	0	0

Above: Branching ratios related to the negative parity bands interpreted as tetrahedral, inter-band transitions to g.s.band

Total Energies Experiment

Possible Experimental Signs of Tetrahedral Symmetry

Table: Experimental ratios $B(E2)_{in}/B(E1)_{out} \times 10^6$

Spin	¹⁵² Gd	¹⁵⁶ Gd	¹⁵⁴ Dy	¹⁶⁰ Er	¹⁶⁴ Er	¹⁶² Yb	¹⁶⁴ Yb	²²² Th
19-	-	50	-	-	-	-		+0.3
17-		16	-	-				+0.4
15-		6	-	60	24			+0.4
13-	14	7	15	18	23		17	+0.3
11-	4	15	5	9	0	10	11	+0.4
9-	4	0	-	0		11	10	+0.4
7-	0	0	0	-	-	0	0	+0.4

Conclusion: The suspected bands in Rare Earth nuclei behave very differently as compared e.g. to 'classical' octupole ²²²Th band!

Total Energies Experiment

Possible Experimental Signs of Tetrahedral Symmetry

Table: Experimental ratios $B(E2)_{in}/B(E1)_{out} \times 10^6$

Spin	¹⁵² Gd	¹⁵⁶ Gd	¹⁵⁴ Dy	¹⁶⁰ Er	¹⁶⁴ Er	¹⁶² Yb	¹⁶⁴ Yb	²²² Th
19-	-	50	-	-	-	-	-	+0.3
17-	-	16	-	-			-	+0.4
15-	-	6	-	60	24		-	+0.4
13-	14	7	15	18	23		17	+0.3
11-	4	15	5	9	0	10	11	+0.4
9-	4	0	-	0		11	10	+0.4
7-	0	0	0	-		0	0	+0.4

Conclusion: The suspected bands in Rare Earth nuclei behave very differently as compared e.g. to 'classical' octupole ²²²Th band!

Total Energies Experiment

Possible Experimental Signs of Tetrahedral Symmetry

Table: Experimental ratios $B(E2)_{in}/B(E1)_{out} \times 10^6$

Spin	¹⁵² Gd	¹⁵⁶ Gd	¹⁵⁴ Dy	¹⁶⁰ Er	¹⁶⁴ Er	¹⁶² Yb	¹⁶⁴ Yb	⁸² Zr
19-	-	50	-	-	-	-	-	-
17-	-	16		-				
15-	-	6		60	24			
13-	14	7	15	18	23		17	
11-	4	15	5	9	0	10	11	
9-	4	0		0		11	10	52
7-	0	0	0	-	-	0	0	4

Conclusion: The suspected bands in the predicted Zirconium region seem to show a tendency similar to that in RE nuclei.

Total Energies Experiment

Possible Experimental Signs of Tetrahedral Symmetry

Table: Experimental ratios $B(E2)_{in}/B(E1)_{out} \times 10^6$

Spin	¹⁵² Gd	¹⁵⁶ Gd	¹⁵⁴ Dy	¹⁶⁰ Er	¹⁶⁴ Er	¹⁶² Yb	¹⁶⁴ Yb	⁸² Zr
19-	-	50	-	-	-	-	-	-
17-	-	16	-	-		-	-	-
15-	-	6	-	60	24	-	-	-
13-	14	7	15	18	23	-	17	-
11-	4	15	5	9	0	10	11	-
9-	4	0	-	0		11	10	52
7-	0	0	0	-		0	0	4

Conclusion: The suspected bands in the predicted Zirconium region seem to show a tendency similar to that in RE nuclei.

Part IV

Spatial Representation of Nuclear Shells

3D Diagrams

Spherical Nuclei Tetrahedral Nucle

Spatial Structure of Orbitals (Spherical ¹³²Sn) ($|\psi(\vec{r})|^2$)

Density distribution $|\psi_{\pi}(\vec{r})|^2 \geq \text{Limit}$, for $\pi = [2, 0, 2]1/2$ orbital

3D Diagrams

Spherical Nuclei Tetrahedral Nucle

Spatial Structure of Orbitals (Spherical ¹³²Sn) ($|\psi(\vec{r})|^2$)

Density distribution $|\psi_{\pi}(\vec{r})|^2 \geq \text{Limit}$, for $\pi = [2, 0, 2]1/2$ orbital

3D Diagrams

Spherical Nuclei Tetrahedral Nucle

Spatial Structure of Orbitals (Spherical ¹³²Sn) ($|\psi(\vec{r})|^2$)

Density distribution $|\psi_{\pi}(\vec{r})|^2 \geq \text{Limit}$, for $\pi = [2, 0, 2]1/2$ orbital
Spherical Nuclei Tetrahedral Nucle

Spatial Structure of Orbitals (Spherical ¹³²Sn) ($|\psi(\vec{r})|^2$)

Density distribution $|\psi_{\pi}(\vec{r})|^2 \geq \text{Limit}$, for $\pi = [2, 0, 2]1/2$ orbital

Spherical Nuclei Tetrahedral Nucle

Spatial Structure of Orbitals (Spherical ¹³²Sn) ($|\psi(\vec{r})|^2$)

Density distribution $|\psi_{\pi}(\vec{r})|^2 \geq \text{Limit}$, for $\pi = [2, 0, 2]1/2$ orbital

Spherical Nuclei Tetrahedral Nucle

Spatial Structure of Orbitals (Spherical ¹³²Sn) ($|\psi(\vec{r})|^2$)

Spherical Nuclei Tetrahedral Nucle

Spatial Structure of Orbitals (Spherical ¹³²Sn) ($|\psi(\vec{r})|^2$)

Spherical Nuclei Tetrahedral Nucle

Spatial Structure of Orbitals (Spherical ¹³²Sn) ($|\psi(\vec{r})|^2$)

Spherical Nuclei Tetrahedral Nucle

Spatial Structure of Orbitals (Spherical ¹³²Sn) ($|\psi(\vec{r})|^2$)

Spherical Nuclei Tetrahedral Nucle

Spatial Structure of Orbitals (Spherical ¹³²Sn) ($|\psi(\vec{r})|^2$)

Spherical Nuclei Tetrahedral Nucle

Spatial Structure of N=3 Spherical Shell $(|\psi_{\nu}(\vec{r})|^2)$

¹³²Sn: Distributions $|\psi_{\nu}(\vec{r})|^2$ for single proton orbitals. Top \mathcal{O}_{xz} , bottom \mathcal{O}_{yz} . Proton $e_{\nu} \leftrightarrow [\nu=30, 32, \dots 38]$ for spherical shell

Spherical Nuclei Tetrahedral Nucle

Spatial Structure of N=3 Spherical Shell $(|\psi_{\nu}(\vec{r})|^2)$

¹³²Sn: Distributions $|\psi_{\nu}(\vec{r})|^2$ for single proton orbitals. Top \mathcal{O}_{xz} , bottom \mathcal{O}_{yz} . Proton $e_{\nu} \leftrightarrow [\nu=40, 42, \dots 48]$ for spherical shell

Spherical Nuclei Tetrahedral Nucle

Spatial Structure of N=3 Spherical Shell $(|\psi_{\nu}(\vec{r})|^2)$

¹³²Sn: distributions $|\psi_{\nu}(\vec{r}\,)|^2$ for consecutive pairs of orbitals. Top \mathcal{O}_{xz} , bottom \mathcal{O}_{yz} . Proton $e_{\nu} \leftrightarrow [n=30:32, \dots 38:40]$, spherical shell

Spherical Nuclei Tetrahedral Nucle

Spatial Structure of N=3 Spherical Shell $(|\psi_{\nu}(\vec{r})|^2)$

¹³²Sn: distributions $|\psi_{\nu}(\vec{r})|^2$ for consecutive pairs of orbitals. Top \mathcal{O}_{xz} , bottom \mathcal{O}_{yz} . Proton $e_{\nu} \leftrightarrow [n=40:42, \dots 48:50]$, spherical shell

Spherical Nuclei Tetrahedral Nuclei

The First Octahedral Shell (20 Nucleons)) $(|\psi(\vec{r})|^2)$

Left: accumulating image of all orbitals; Right: Single Orbital (No.1)

Spherical Nuclei Tetrahedral Nuclei

The First Octahedral Shell (20 Nucleons)) $(|\psi(\vec{r})|^2)$

Left: accumulating image of all orbitals; Right: Single Orbital (No.2)

Spherical Nuclei Tetrahedral Nuclei

The First Octahedral Shell (20 Nucleons)) $(|\psi(\vec{r})|^2)$

Left: accumulating image of all orbitals; Right: Single Orbital (No.3)

Spherical Nuclei Tetrahedral Nuclei

The First Octahedral Shell (20 Nucleons)) $(|\psi(\vec{r})|^2)$

Left: accumulating image of all orbitals; Right: Single Orbital (No.4)

Spherical Nuclei Tetrahedral Nuclei

The First Octahedral Shell (20 Nucleons)) $(|\psi(\vec{r})|^2)$

Left: accumulating image of all orbitals; Right: Single Orbital (No.5)

Spherical Nuclei Tetrahedral Nuclei

The First Octahedral Shell (20 Nucleons)) $(|\psi(\vec{r})|^2)$

Left: accumulating image of all orbitals; Right: Single Orbital (No.6)

Spherical Nuclei Tetrahedral Nuclei

The First Octahedral Shell (20 Nucleons)) $(|\psi(\vec{r})|^2)$

Left: accumulating image of all orbitals; Right: Single Orbital (No.7)

Spherical Nuclei Tetrahedral Nuclei

The First Octahedral Shell (20 Nucleons)) $(|\psi(\vec{r})|^2)$

Left: accumulating image of all orbitals; Right: Single Orbital (No.8)

Spherical Nuclei Tetrahedral Nuclei

The First Octahedral Shell (20 Nucleons)) $(|\psi(\vec{r})|^2)$

Left: accumulating image of all orbitals; Right: Single Orbital (No.9)

Spherical Nuclei Tetrahedral Nuclei

The First Octahedral Shell (20 Nucleons)) $(|\psi(\vec{r})|^2)$

Three space perspectives of the full octahedral shell (n=20 nucleons)

Part V

Nuclear Quantum Rotor

Energy Spectra Electromagnetic Transitions

Quantum Systems and Rotation: Preliminaries [1]

Microscopic 'True' H -> All Solutions

Energy Spectra Electromagnetic Transitions

Quantum Systems and Rotation: Preliminaries [1]

Microscopic 'True' H -> All Solutions

Alternative:

Mean Field H -> Individual Nucleons

Energy Spectra Electromagnetic Transitions

Quantum Systems and Rotation: Preliminaries [1]

Microscopic 'True' H -> All Solutions

Alternative:

Mean Field H -> Individual Nucleons

Alternative:

Collective Rotor H -> Rotational Bands

Energy Spectra Electromagnetic Transitions

Quantum Systems and Rotation: Preliminaries [2]

Collective Rotor Hamiltonian

Jerzy DUDEK Tetral

Tetrahedral and Octahedral Symmetries in Nuclei

Energy Spectra Electromagnetic Transitions

Quantum Systems and Rotation: Preliminaries [2]

Energy Spectra Electromagnetic Transitions

Quantum Systems and Rotation: Preliminaries [2]

- Suppose a system manifests a spontaneous symmetry breaking
- We find it convenient to describe it with the help of $H_{mf}(\{6A\})$
- We wish to stress rotational degrees of freedom by introducing

 $H_{eff}(\{6A\}) = H_{rot} + H_{mf}(\{6A\})$

Thus the symmetries of H_{eff}({6A}) and of H_{mf}({6A}) coincide
 Thus symmetries of H_{rot} and of H_{mf}({6A}) should be the same

- Suppose a system manifests a spontaneous symmetry breaking
- We find it convenient to describe it with the help of $H_{mf}({6A})$
- We wish to stress rotational degrees of freedom by introducing

$H_{eff}(\{6A\}) = H_{rot} + H_{mf}(\{6A\})$

- Thus the symmetries of $H_{eff}(\{6A\})$ and of $H_{mf}(\{6A\})$ coincide
- Thus symmetries of H_{rot} and of $H_{mf}(\{6A\})$ should be the same

- Suppose a system manifests a spontaneous symmetry breaking
- We find it convenient to describe it with the help of $H_{mf}({6A})$
- We wish to stress rotational degrees of freedom by introducing

$$H_{eff}(\{6A\}) = H_{rot} + H_{mf}(\{6A\})$$

- Thus the symmetries of $H_{eff}({6A})$ and of $H_{mf}({6A})$ coincide
- Thus symmetries of H_{rot} and of $H_{mf}(\{6A\})$ should be the same

- Suppose a system manifests a spontaneous symmetry breaking
- We find it convenient to describe it with the help of $H_{mf}({6A})$
- We wish to stress rotational degrees of freedom by introducing

$$H_{eff}(\{6A\}) = H_{rot} + H_{mf}(\{6A\})$$

- Thus the symmetries of $H_{eff}({6A})$ and of $H_{mf}({6A})$ coincide
- Thus symmetries of H_{rot} and of $H_{mf}(\{6A\})$ should be the same

- Suppose a system manifests a spontaneous symmetry breaking
- We find it convenient to describe it with the help of $H_{mf}({6A})$
- We wish to stress rotational degrees of freedom by introducing

$$H_{eff}({6A}) = H_{rot} + H_{mf}({6A})$$

- Thus the symmetries of $H_{eff}({6A})$ and of $H_{mf}({6A})$ coincide
- Thus symmetries of H_{rot} and of $H_{mf}({6A})$ should be the same

What Must - and What Must Not be Attempted

The only direct observables are <u>energy and angular momentum</u> Refusing:

- No use of the classical concepts such as 'inertia' or 'rigid body'
- No use of derived concepts as VMI or Harris parametrisations

Accepting:

Nuclear modelling focuses on the mechanism under interest

- To study individual-nucleonic features ightarrow Basis of \hat{x}_k & \hat{p}_k
- For collective rotation $\ o \underline{\mathsf{Basis}}$ of $\{\hat{l}_+, \hat{l}_-, \hat{l}_0\}$ & $\{lpha, eta, \gamma\}$

Basis
$$\{\hat{l}_+, \hat{l}_-, \hat{l}_0\}$$
 : $\hat{\mathcal{T}}_{\lambda\mu}(n) \stackrel{df.}{=} [(\hat{l} \otimes \hat{l}) \otimes \ldots \otimes \hat{l}]_{\lambda\mu}$

n factors

What Must - and What Must Not be Attempted

The only direct observables are <u>energy and angular momentum</u> Refusing:

- No use of the classical concepts such as 'inertia' or 'rigid body'
- No use of derived concepts as VMI or Harris parametrisations

Accepting:

Nuclear modelling focuses on the mechanism under interest

- To study individual-nucleonic features \rightarrow Basis of \hat{x}_k & \hat{p}_k
- For collective rotation $\ o {
 m Basis}$ of $\{\hat{l}_+,\hat{l}_-,\hat{l}_0\}$ & $\{lpha,eta,\gamma\}$

Basis
$$\{\hat{l}_+, \hat{l}_-, \hat{l}_0\}$$
 : $\hat{\mathcal{T}}_{\lambda\mu}(n) \stackrel{df.}{=} [(\hat{l} \otimes \hat{l}) \otimes \ldots \otimes \hat{l}]_{\lambda\mu}$

n factors

What Must - and What Must Not be Attempted

The only direct observables are <u>energy and angular momentum</u> Refusing:

- No use of the classical concepts such as 'inertia' or 'rigid body'
- No use of derived concepts as VMI or Harris parametrisations

Accepting:

- Nuclear modelling focuses on the mechanism under interest
 - To study individual-nucleonic features \rightarrow Basis of \hat{x}_k & \hat{p}_k
 - For collective rotation $\ o \underline{\mathsf{Basis}}$ of $\{\hat{l}_+, \hat{l}_-, \hat{l}_0\}$ & $\{lpha, eta, \gamma\}$

Basis
$$\{\hat{l}_+, \hat{l}_-, \hat{l}_0\}$$
 : $\hat{\mathcal{T}}_{\lambda\mu}(n) \stackrel{df.}{=} [(\hat{l} \otimes \hat{l}) \otimes \ldots \otimes \hat{l}]_{\lambda\mu}$

n factors
The only direct observables are energy and angular momentum Refusing:

- No use of the classical concepts such as 'inertia' or 'rigid body'
- <u>No use of derived concepts</u> as VMI or Harris parametrisations

Accepting:

- Nuclear modelling focuses on the mechanism under interest
 - To study individual-nucleonic features \rightarrow Basis of \hat{x}_k & \hat{p}_k
 - For collective rotation $\ o \underline{\mathsf{Basis}}$ of $\{\hat{l}_+, \hat{l}_-, \hat{l}_0\}$ & $\{lpha, eta, \gamma\}$

Basis $\{\hat{l}_+, \hat{l}_-, \hat{l}_0\} : \hat{T}_{\lambda\mu}(n) \stackrel{df.}{=} [(\hat{l} \otimes \hat{l}) \otimes \ldots \otimes \hat{l}]_{\lambda\mu}$

n factors

The only direct observables are <u>energy and angular momentum</u> Refusing:

- No use of the classical concepts such as 'inertia' or 'rigid body'
- <u>No use of derived concepts</u> as VMI or Harris parametrisations

Accepting:

- Nuclear modelling focuses on the mechanism under interest
 - To study individual-nucleonic features ightarrow Basis of \hat{x}_k & \hat{p}_k
 - For collective rotation \rightarrow <u>Basis</u> of $\{\hat{l}_+, \hat{l}_-, \hat{l}_0\}$ & $\{lpha, eta, \gamma\}$

Basis
$$\{\hat{l}_+, \hat{l}_-, \hat{l}_0\} : \hat{\mathcal{T}}_{\lambda\mu}(n) \stackrel{df.}{=} [(\hat{l} \otimes \hat{l}) \otimes \ldots \otimes \hat{l}]_{\lambda\mu}$$

n factors

The only direct observables are <u>energy and angular momentum</u> Refusing:

- No use of the classical concepts such as 'inertia' or 'rigid body'
- <u>No use of derived concepts</u> as VMI or Harris parametrisations

Accepting:

- Nuclear modelling focuses on the mechanism under interest
 - To study individual-nucleonic features \rightarrow Basis of $\hat{x}_k \& \hat{p}_k$
 - For collective rotation \rightarrow <u>Basis</u> of $\{\hat{l}_+, \hat{l}_-, \hat{l}_0\}$ & $\{lpha, eta, \gamma\}$

Basis
$$\{\hat{l}_+, \hat{l}_-, \hat{l}_0\}$$
 : $\hat{\mathcal{T}}_{\lambda\mu}(n) \stackrel{df.}{=} [(\hat{l} \otimes \hat{l}) \otimes \ldots \otimes \hat{l}]_{\lambda\mu}$

n factors

The only direct observables are <u>energy and angular momentum</u> Refusing:

- No use of the classical concepts such as 'inertia' or 'rigid body'
- <u>No use of derived concepts</u> as VMI or Harris <u>parametrisations</u>

Accepting:

- Nuclear modelling focuses on the mechanism under interest
 - To study individual-nucleonic features \rightarrow Basis of \hat{x}_k & \hat{p}_k
 - For collective rotation \rightarrow <u>Basis</u> of $\{\hat{l}_+, \hat{l}_-, \hat{l}_0\}$ & $\{lpha, eta, \gamma\}$

Basis $\{\hat{l}_+, \hat{l}_-, \hat{l}_0\}$: $\hat{\mathcal{T}}_{\lambda\mu}(n) \stackrel{df.}{=} [(\hat{l} \otimes \hat{l}) \otimes \ldots \otimes \hat{l}]_{\lambda\mu}$

n factors

The only direct observables are <u>energy and angular momentum</u> Refusing:

- No use of the classical concepts such as 'inertia' or 'rigid body'
- No use of derived concepts as VMI or Harris parametrisations

Accepting:

- Nuclear modelling focuses on the mechanism under interest
 - To study individual-nucleonic features \rightarrow Basis of \hat{x}_k & \hat{p}_k
 - For collective rotation $\rightarrow \underline{\text{Basis}}$ of $\{\hat{l}_+, \hat{l}_-, \hat{l}_0\} \& \{\alpha, \beta, \gamma\}$

Basis
$$\{\hat{l}_+, \hat{l}_-, \hat{l}_0\}$$
 : $\hat{\mathcal{T}}_{\lambda\mu}(n) \stackrel{df.}{=} [(\hat{l} \otimes \hat{l}) \otimes \dots \otimes \hat{l}]_{\lambda\mu}$

n factors

The only direct observables are <u>energy and angular momentum</u> Refusing:

- No use of the classical concepts such as 'inertia' or 'rigid body'
- No use of derived concepts as VMI or Harris parametrisations

Accepting:

- Nuclear modelling focuses on the mechanism under interest
 - To study individual-nucleonic features \rightarrow Basis of \hat{x}_k & \hat{p}_k
 - For collective rotation $\rightarrow \underline{\text{Basis}}$ of $\{\hat{l}_+, \hat{l}_-, \hat{l}_0\} \& \{\alpha, \beta, \gamma\}$

Basis
$$\{\hat{l}_+, \hat{l}_-, \hat{l}_0\}$$
 : $\hat{T}_{\lambda\mu}(n) \stackrel{\text{df.}}{=} \underbrace{[(\hat{l} \otimes \hat{l}) \otimes \ldots \otimes \hat{l}]_{\lambda\mu}}_{n}$

n factors

Nuclear Rotor: Collective vs. Intrinsic Hamiltonians

• One of the most successful models of nuclear structure is the rotor model based on the Hamiltonian

$$\widehat{\boldsymbol{H}}^{[inite]} = \widehat{\boldsymbol{H}}^{[inite]} + \widehat{\boldsymbol{H}}^{[inite]} + \widehat{\boldsymbol{H}}^{[inite]}$$

• Neglecting the interaction term as an approximation leads to

 $|\psi_{i}|_{i=1}^{i}|_{$

• Terms $\mathrm{E}^{[intr.]}$ define the <u>band-head</u> energies

Nuclear Rotor: Collective vs. Intrinsic Hamiltonians

• One of the most successful models of nuclear structure is the rotor model based on the Hamiltonian

$$\hat{\boldsymbol{H}}^{[\text{nucl}]} = \hat{\boldsymbol{H}}^{[\text{nucl}]} + \hat{\boldsymbol{H}}^{[\text{nucl}]} + \hat{\boldsymbol{H}}^{[\text{nucl}]}$$

• Neglecting the interaction term as an approximation leads to

$$\Phi^{[mot]} = \psi^{[mt]} \times \chi^{[mt]} \text{ and } \mathbb{E}^{[mt]} = \mathbb{E}^{[mt]} + \mathbb{E}^{[mt]}$$

• Terms $\mathrm{E}^{[intr.]}$ define the <u>band-head</u> energies

Nuclear Rotor: Collective vs. Intrinsic Hamiltonians

• One of the most successful models of nuclear structure is the rotor model based on the Hamiltonian

$$\hat{\boldsymbol{H}}^{[\text{nucl}]} = \hat{\boldsymbol{H}}^{[\text{nucl}]} + \hat{\boldsymbol{H}}^{[\text{nucl}]} + \hat{\boldsymbol{H}}^{[\text{nucl}]}$$

• Neglecting the interaction term as an approximation leads to

$$\Phi^{[met]} = \psi^{[met]} \times \chi^{[met]} \text{ and } \mathbf{E}^{[met]} = \mathbf{E}^{[met]} + \mathbf{E}^{[met]}$$

• Terms $\mathrm{E}^{[\textit{intr.}]}$ define the <u>band-head</u> energies

Nuclear Rotor: Collective vs. Intrinsic Hamiltonians

• To compare the rotor spectra with experiment, we must shift every band upwards, introducing the band-head energies

• Setting all band-head energies to zero we obtain the so-called <u>reduced</u> form of rotor spectra allowing to discuss properties of H^{rot.}

Nuclear Rotor: Collective vs. Intrinsic Hamiltonians

• To compare the rotor spectra with experiment, we must shift every band upwards, introducing the band-head energies

• Setting all band-head energies to zero we obtain the so-called <u>reduced</u> form of rotor spectra allowing to discuss properties of H^{rot.}

Energy Spectra Electromagnetic Transitions

Ellipsoidal Rotor: Energy Spectrum at $\gamma = 0^o$

To facilitate reading, the spectrum is normalised to the yrast line

Energy Spectra Electromagnetic Transitions

Ellipsoidal Rotor: Energy Spectrum at $\gamma = 10^o$

To facilitate reading, the spectrum is normalised to the yrast line

Energy Spectra Electromagnetic Transitions

Ellipsoidal Rotor: Energy Spectrum at $\gamma = 20^o$

To facilitate reading, the spectrum is normalised to the yrast line

Energy Spectra Electromagnetic Transitions

Ellipsoidal Rotor: Energy Spectrum at $\gamma = 30^o$

To facilitate reading, the spectrum is normalised to the yrast line

Energy Spectra Electromagnetic Transitions

Ellipsoidal Rotor: Energy Spectrum at $\gamma = 40^o$

To facilitate reading, the spectrum is normalised to the yrast line

Energy Spectra Electromagnetic Transitions

Ellipsoidal Rotor: Energy Spectrum at $\gamma = 50^o$

To facilitate reading, the spectrum is normalised to the yrast line

Energy Spectra Electromagnetic Transitions

Ellipsoidal Rotor: Energy Spectrum at $\gamma = 60^o$

To facilitate reading, the spectrum is normalised to the yrast line

Energy Spectra Electromagnetic Transitions

Stretched Qudrupole Transitions in the D₂ Rotor

Observe the domination of $\Delta I = 2$ stretched E2 \rightarrow g.s. transitions

Energy Spectra Electromagnetic Transitions

Reduced Spectrum of the Tetrahedral-Symmetric Rotor

Spectrum is normalised to 99 % of the yrast line

Jerzy DUDEK

Energy Spectra Electromagnetic Transitions

Electro-Magnetic E2 Transitions from $I_{[9]}[C2]=4$ State

Stretched and non-stretched E2 transitions: observe retardation of the $C2 \rightarrow C2$ transitions

Energy Spectra Electromagnetic Transitions

Electro-Magnetic E2 Transitions from I_[5][C2] State

Stretched and non-stretched E2 transitions: observed retarded $C1 \rightarrow C1$ transitions

Energy Spectra Electromagnetic Transitions

Electro-Magnetic E2 Transitions from I_[1][C2] State

Stretched and non-stretched E2 transitions: observed retarded $C3 \rightarrow C3$ transitions

Energy Spectra Electromagnetic Transitions

Electro-Magnetic E2 Transitions - Comparison

Observe the <u>domination</u> of $Ci \rightarrow C(k \neq i)$ transitions and <u>retardation</u> of the $Ci \rightarrow Ci$ type transitions

- We expect a competition between the minima of tetrahedral and quadrupole-deformed (prolate and/or oblate) shapes
- The decay patterns of the quadrupole bands are very neat; stretched E2-transitions dominate ↔ a distinct feature
- The tetrahedral minima are expected to be 'contaminated' with quadrupole deformation. Contamination with $\beta \sim 0.03$ implies already a significant E1-E2 competition
- There is a degeneracy pattern different in the D₂ and T-symmetry cases: tetrahedral symmetry implies three-fold degeneracies

- We expect a competition between the minima of tetrahedral and quadrupole-deformed (prolate and/or oblate) shapes
- The decay patterns of the quadrupole bands are very neat; stretched E2-transitions dominate ↔ a distinct feature
- The tetrahedral minima are expected to be 'contaminated' with quadrupole deformation. Contamination with $\beta \sim 0.03$ implies already a significant E1-E2 competition
- There is a degeneracy pattern different in the D₂ and T-symmetry cases: tetrahedral symmetry implies three-fold degeneracies

- We expect a competition between the minima of tetrahedral and quadrupole-deformed (prolate and/or oblate) shapes
- The decay patterns of the quadrupole bands are very neat; stretched E2-transitions dominate ↔ a distinct feature
- The tetrahedral minima are expected to be 'contaminated' with quadrupole deformation. Contamination with $\beta\sim$ 0.03 implies already a significant E1-E2 competition
- There is a degeneracy pattern different in the D₂ and T-symmetry cases: tetrahedral symmetry implies three-fold degeneracies

- We expect a competition between the minima of tetrahedral and quadrupole-deformed (prolate and/or oblate) shapes
- The decay patterns of the quadrupole bands are very neat; stretched E2-transitions dominate ↔ a distinct feature
- The tetrahedral minima are expected to be 'contaminated' with quadrupole deformation. Contamination with $\beta\sim$ 0.03 implies already a significant E1-E2 competition
- There is a degeneracy pattern different in the D₂ and T-symmetry cases: tetrahedral symmetry implies three-fold degeneracies

E2 Selection - Detailed Predictions [2]

- E2-transitions connect C1, C2 and C3 symmetry states among themselves and T1-symmetry states among themselves!
- Quadrupole transitions of the type C1 \rightarrow C1, C2 \rightarrow C2 and C3 \rightarrow C3 are vanishing/negligible
- Out of $(2l + 1)_{in} \times (2l + 2)_{fin}$ transitions *a priori* possible only roughly 1/4 are clearly non-vanishing

E2 Selection - Detailed Predictions [2]

- E2-transitions connect C1, C2 and C3 symmetry states among themselves and T1-symmetry states among themselves!
- Quadrupole transitions of the type C1 \rightarrow C1, C2 \rightarrow C2 and C3 \rightarrow C3 are vanishing/negligible
- Out of $(2l + 1)_{in} \times (2l + 2)_{fin}$ transitions *a priori* possible only roughly 1/4 are clearly non-vanishing

E2 Selection - Detailed Predictions [2]

- E2-transitions connect C1, C2 and C3 symmetry states among themselves and T1-symmetry states among themselves!
- Quadrupole transitions of the type C1 \rightarrow C1, C2 \rightarrow C2 and C3 \rightarrow C3 are vanishing/negligible
- Out of $(2I + 1)_{in} \times (2I + 2)_{fin}$ transitions a priori possible only roughly 1/4 are clearly non-vanishing

Energy Spectra Electromagnetic Transitions

Statistical Wobbling in Space: O_h-Case

Spin-Orientation Probability I=9, n=1, Representation A2

Energy Spectra Electromagnetic Transitions

Statistical Wobbling in Space: O_h-Case

Spin-Orientation Probability I=9, n=2, T2 (3-fold degenerate)

Jerzy DUDEK

Energy Spectra Electromagnetic Transitions

Statistical Wobbling in Space: O_h-Case

Spin-Orientation Probability I=9, n=3, T2 (3-fold degenerate)

Jerzy DUDEK

Energy Spectra Electromagnetic Transitions

Statistical Wobbling in Space: O_h-Case

Spin-Orientation Probability I=9, n=4, T2 (3-fold degenerate)

Jerzy DUDEK

Energy Spectra Electromagnetic Transitions

Statistical Wobbling in Space: O_h-Case

Spin-Orientation Probability I=9, n=5, T1 (3-fold degenerate)

Jerzy DUDEK
Energy Spectra Electromagnetic Transitions

Statistical Wobbling in Space: O_h-Case

Spin-Orientation Probability I=9, n=6, T1 (3-fold degenerate)

Jerzy DUDEK

Energy Spectra Electromagnetic Transitions

Statistical Wobbling in Space: O_h-Case

Spin-Orientation Probability I=9, n=7, T1 (3-fold degenerate)

Jerzy DUDEK

Energy Spectra Electromagnetic Transitions

Statistical Wobbling in Space: O_h-Case

Spin-Orientation Probability I=9, n=8, A1 (1-fold degenerate)

Jerzy DUDEK Tet

Energy Spectra Electromagnetic Transitions

Statistical Wobbling in Space: O_h-Case

Spin-Orientation Probability I=9, n=9, T1 (3-fold degenerate)

Jerzy DUDEK

Energy Spectra Electromagnetic Transitions

Statistical Wobbling in Space: O_h-Case

Spin-Orientation Probability I=9, n=10, T1 (3-fold degenerate)

Jerzy DUDEK

Energy Spectra Electromagnetic Transitions

Statistical Wobbling in Space: O_h-Case

Spin-Orientation Probability I=9, n=11, T1 (3-fold degenerate)

Jerzy DUDEK

Energy Spectra Electromagnetic Transitions

Statistical Wobbling in Space: O_h-Case

Spin-Orientation Probability I=9, n=12, E (2-fold degenerate)

Energy Spectra Electromagnetic Transitions

Statistical Wobbling in Space: O_h-Case

Spin-Orientation Probability I=9, n=13, E (2-fold degenerate)

Part VI

Summary & Perspectives

- Tetrahedral symmetry in nuclei is predicted as an abundant phenomenon in numerous islands throughout the Periodic Table
- seen already with 'old' non-existing facilities not realising it!
- The tetrahedral Rare-Earth nuclei are about the only non-exotic nuclei that can be studied with relatively modest facilities
- The latter can be seen as a cadeau du ciel: allowing to learn the new physics 'inexpensively'

Search for the high-rank symmetries in nuclei presents a genuinely new physics challenge in nuclear structure domain for large facilities

- Tetrahedral symmetry in nuclei is predicted as an abundant phenomenon in numerous islands throughout the Periodic Table
- 2 Most of the nuclei in question are either neutron rich or proton rich and thus of interest for exotic-nuclei projects

seen already with 'old' non-existing facilities

The tetrahedral Rare-Earth nuclei are about the online

- Tetrahedral symmetry in nuclei is predicted as an abundant phenomenon in numerous islands throughout the Periodic Table
- 2 Most of the nuclei in question are either neutron rich or proton rich and thus of interest for exotic-nuclei projects
- 3 Paradoxally, the high-level symmetries have most likely been seen already with 'old' non-existing facilities - not realising it!
- nuclei that can be studied with relatively modest facilities

- Tetrahedral symmetry in nuclei is predicted as an abundant phenomenon in numerous islands throughout the Periodic Table
- 2 Most of the nuclei in question are either neutron rich or proton rich and thus of interest for exotic-nuclei projects
- Paradoxally, the high-level symmetries have most likely been seen already with 'old' non-existing facilities - not realising it!
- The <u>tetrahedral Rare-Earth nuclei</u> are about the only non-exotic nuclei that can be studied with relatively modest facilities

- Tetrahedral symmetry in nuclei is predicted as an abundant phenomenon in numerous islands throughout the Periodic Table
- 2 Most of the nuclei in question are either neutron rich or proton rich and thus of interest for exotic-nuclei projects
- Paradoxally, the high-level symmetries have most likely been seen already with 'old' non-existing facilities - not realising it!
- The <u>tetrahedral Rare-Earth nuclei</u> are about the only non-exotic nuclei that can be studied with relatively modest facilities
- 5 The latter can be seen as a *cadeau du ciel*: allowing to learn the new physics 'inexpensively'

- Tetrahedral symmetry in nuclei is predicted as an abundant phenomenon in numerous islands throughout the Periodic Table
- 2 Most of the nuclei in question are either neutron rich or proton rich and thus of interest for exotic-nuclei projects
- 3 Paradoxally, the high-level symmetries have most likely been seen already with 'old' non-existing facilities - not realising it!
- The <u>tetrahedral Rare-Earth nuclei</u> are about the only non-exotic nuclei that can be studied with relatively modest facilities
- 5 The latter can be seen as a *cadeau du ciel*: allowing to learn the new physics 'inexpensively'

Summary Perspectives

Perspectives: COLLABORATION 'TETRANUC'

A few points about the TETRANUC collaboration:

Goal: Demonstrate the existence and study the structure of tetrahedral nuclei at Ganil with Spiral 1 and 2

Cracow, Legnaro, Madrid, Surrey and Warsaw. Cracow, Legnaro, Madrid, Surrey and Warsaw.

Number of participants:

persons: 25 experimentalists and 5 theoreticians

Summary Perspectives

Perspectives: COLLABORATION 'TETRANUC'

A few points about the TETRANUC collaboration:

Goal: Demonstrate the existence and study the structure of tetrahedral nuclei at Ganil with Spiral 1 and 2

Laboratories today: Strasbourg, Ganil, Orsay, GSI-Darmstad, Cracow, Legnaro, Madrid, Surrey and Warsaw

Number of participants:

supprised of the second s

Summary Perspectives

Perspectives: COLLABORATION 'TETRANUC'

A few points about the TETRANUC collaboration:

Goal: Demonstrate the existence and study the structure of tetrahedral nuclei at Ganil with Spiral 1 and 2

Laboratories today: Strasbourg, Ganil, Orsay, GSI-Darmstad, Cracow, Legnaro, Madrid, Surrey and Warsaw New members are very welcome!

Number of participants

persons: 25 experimentalists and 5 theoreticians

Summary Perspectives

Perspectives: COLLABORATION 'TETRANUC'

A few points about the TETRANUC collaboration:

Goal: Demonstrate the existence and study the structure of tetrahedral nuclei at Ganil with Spiral 1 and 2

Laboratories today: Strasbourg, Ganil, Orsay, GSI-Darmstad, Cracow, Legnaro, Madrid, Surrey and Warsaw New members are very welcome!

Number of participants:

persons: 25 experimentatists and 5 theoreticianes

Summary Perspectives

Perspectives: COLLABORATION 'TETRANUC'

A few points about the TETRANUC collaboration:

Goal: Demonstrate the existence and study the structure of tetrahedral nuclei at Ganil with Spiral 1 and 2

Laboratories today: Strasbourg, Ganil, Orsay, GSI-Darmstad, Cracow, Legnaro, Madrid, Surrey and Warsaw

New members are very welcome!

Number of participants:

30 persons:

Summary Perspectives

Perspectives: COLLABORATION 'TETRANUC'

A few points about the TETRANUC collaboration:

Goal: Demonstrate the existence and study the structure of tetrahedral nuclei at Ganil with Spiral 1 and 2

Laboratories today: Strasbourg, Ganil, Orsay, GSI-Darmstad, Cracow, Legnaro, Madrid, Surrey and Warsaw New members are very welcome!

Number of participants: 30 persons: 25 experimentalists

Summary Perspectives

Perspectives: COLLABORATION 'TETRANUC'

A few points about the TETRANUC collaboration:

Goal: Demonstrate the existence and study the structure of tetrahedral nuclei at Ganil with Spiral 1 and 2

Laboratories today: Strasbourg, Ganil, Orsay, GSI-Darmstad, Cracow, Legnaro, Madrid, Surrey and Warsaw New members are very welcome!

Number of participants: 30 persons: 25 experimentalists and 5 theoreticians

Summary Perspectives

Perspectives: COLLABORATION 'TETRANUC'

A few points about the TETRANUC collaboration:

Goal: Demonstrate the existence and study the structure of tetrahedral nuclei at Ganil with Spiral 1 and 2

Laboratories today: Strasbourg, Ganil, Orsay, GSI-Darmstad, Cracow, Legnaro, Madrid, Surrey and Warsaw New members are very welcome!

Number of participants:30 persons:25 experimentalists and 5 theoreticians

Summary Perspectives

Perspectives: COLLABORATION 'TETRANUC'

A few points about the TETRANUC collaboration:

Goal: Demonstrate the existence and study the structure of tetrahedral nuclei at Ganil with Spiral 1 and 2

Laboratories today: Strasbourg, Ganil, Orsay, GSI-Darmstad, Cracow, Legnaro, Madrid, Surrey and Warsaw New members are very welcome!

Number of participants: 30 persons: 25 experimentalists and 5 theoreticians

Summary Perspectives

Perspectives: COLLABORATION 'TETRANUC'

A few points about the TETRANUC collaboration:

Goal: Demonstrate the existence and study the structure of tetrahedral nuclei at Ganil with Spiral 1 and 2

Laboratories today: Strasbourg, Ganil, Orsay, GSI-Darmstad, Cracow, Legnaro, Madrid, Surrey and Warsaw New members are very welcome!

Number of participants: 30 persons: 25 experimentalists and 5 theoreticians

A few points about the TETRANUC collaboration:

The LOGO (!) of the new collaboration suggests our principal interest:

Find for the first time the experimental evidence of the tetrahedral symmetry in subatomic physics.

First proposals: To study the suspect tetrahedral band in 156 Gd. Using known transition energies aim at as precise as possible B(E2)/B(E1) ratios, also Q₂.

A few points about the TETRANUC collaboration:

The LOGO (!) of the new collaboration suggests our principal interest:

Find for the first time the experimental evidence of the tetrahedral symmetry in subatomic physics.

First proposals: To study the suspect tetrahedral band in 156 Gd. Using known transition energies aim at as precise as possible B(E2)/B(E1) ratios, also Q₂.

A few points about the TETRANUC collaboration:

The LOGO (!) of the new collaboration suggests our principal interest:

Find for the first time the experimental evidence of the tetrahedral symmetry in subatomic physics.

First proposals: To study the suspect tetrahedral band in 156 Gd. Using known transition energies aim at as precise as possible B(E2)/B(E1) ratios, also Q₂.

A few points about the TETRANUC collaboration:

The LOGO (!) of the new collaboration suggests our principal interest:

Find for the first time the experimental evidence of the tetrahedral symmetry in subatomic physics.

First proposals: To study the suspect tetrahedral band in ^{156}Gd . Using known transition energies aim at as precise as possible B(E2)/B(E1) ratios, also Q₂.

A few points about the TETRANUC collaboration:

The LOGO (!) of the new collaboration suggests our principal interest:

Find for the first time the experimental evidence of the tetrahedral symmetry in subatomic physics.

First proposals: To study the suspect tetrahedral band in ^{156}Gd . Using known transition energies aim at as precise as possible B(E2)/B(E1) ratios, also Q₂.

- From the basic physics point of view the tetrahedral symmetry in sub-atomic physics seems comparably or more fundamental and/or interesting than e.g. super-deformation
- Measurements will involve:

 a. Life-times (to establish weak quadrupole moments);
 b. Electromagnetic transition ratios e.g. B(E2)/B(E1)...
- - in many cases the nuclei 'to the east' and/or 'to the west' from those centres

- From the basic physics point of view the tetrahedral symmetry in sub-atomic physics seems comparably or more fundamental and/or interesting than e.g. super-deformation
- Measurements will involve:
 a. Life-times (to establish weak quadrupole moments);
 - b. Electromagnetic transition ratios e.g. B(E2)/B(E1) ...

 in many cases the nuclei 'to the east' and/or 'to the west' from those centres

- From the basic physics point of view the tetrahedral symmetry in sub-atomic physics seems comparably or more fundamental and/or interesting than e.g. super-deformation
- 2 Measurements will involve:
 - a. Life-times (to establish weak quadrupole moments);
 - b. Electromagnetic transition ratios e.g. B(E2)/B(E1) ...
- 3 ... and nuclei placed around the tetrahedral magicity centres:

- in many cases the nuclei 'to the east' and/or 'to the west' from those centres

- From the basic physics point of view the tetrahedral symmetry in sub-atomic physics seems comparably or more fundamental and/or interesting than e.g. super-deformation
- 2 Measurements will involve:
 - a. Life-times (to establish weak quadrupole moments);
 - b. Electromagnetic transition ratios e.g. B(E2)/B(E1) ...
- 3 ... and nuclei placed around the tetrahedral magicity centres:

- in many cases the nuclei 'to the east' and/or 'to the west' from those centres