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Tetrahedral and Octahedral Symmetries

Part I

Introduction: Symmetry and Nuclear Stability
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Tetrahedral and Octahedral Symmetries
Gaps and Stability
Symmetry and Gaps

Nuclear Stability and Gaps in the Spectra [1]

Here and in the following we use
the nuclear mean-field approach

The deformation-parameter axis
represents often many independent
deformations of the mean field

The presence of the sufficiently
strong gaps at Fermi levels leads
to shape coexistence

In what follows we focus on shell
effects generated by high symme-
try point-groups (see below)
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Tetrahedral and Octahedral Symmetries
Gaps and Stability
Symmetry and Gaps

Single-Particle Gaps and Underlying Symmetries [1]

One of the first mechanisms used in nuclear physics is related
to the Harmonic Oscillator ’rule’: ωx : ωy : ωz = k : m : n

This mechanism manifests (is a special case) of SU3 symmetry
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Tetrahedral and Octahedral Symmetries
Gaps and Stability
Symmetry and Gaps

Symmetries and Implied Degeneracies of Levels [1]

Both spherical gaps and deformed oscillator gaps arise because
of the degeneracy of levels

How to optimise the mathematical conditions so that the de-
generacies are the strongest possible?

The answer is:

Use the group- and the group-representation theory!
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Tetrahedral and Octahedral Symmetries
Gaps and Stability
Symmetry and Gaps

Symmetry Groups and Degeneracies of Levels

Given Hamiltonian H and a group: G = {O1,O2, . . . Of }
Assume that G is a symmetry group of H i.e.

[H,Ok ] = 0 with k = 1, 2, . . . f

Let irreducible representations of G be {R1,R2, . . . Rr}
Let their dimensions be {d1, d2, . . . dr}, respectively

Then the eigenvalues {εν} of the problem

Hψν = ενψν

appear in multiplets d1-fold, d2-fold ... degenerate
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Tetrahedral and Octahedral Symmetries
Gaps and Stability
Symmetry and Gaps

What Are the Nuclear High-Level Symmetry Groups?

32 Point Groups: Subgroups
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Figure: Cubic group structure

Dashed lines indicate that the sub-
group marked is not invariant

Trivial groups: C1 ≡ {1I}, Cs ≡ {1I, σ̂}
and Ci ≡ {1I, π̂}

Only the double groups OD
h and TD

d

lead to four-fold degeneracies in the
nucleonic spectra - all the others cause
merely two-fold degeneracies. This is
why the former are called high-level ...
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Irreducible Representations and Gaps - Nuclear Context

The nuclear potential depth is approximately constant - it de-
pends only weakly on the particle numbers and on deformation

The higher the dimensions of the irreps. → the higher the
degeneracies of s.p. levels→ the larger the gaps, on the average

The highest dimensions of the irreducible representations corre-
spond to the Double Tetrahedral & Octahedral Groups (d = 4)

Three ’repartitions’ of single particle
levels into various irreducible repres.:
Left: one two-dimensional irrep.
Middle: two two-dimensional irreps.
Right: one two-dimensional

and 2 four-dimensional irreps.

1: 2−dims.
1: 2−dims.
1: 4−dims.

2: 2−dims.

gap

gap GAP !
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Gaps and Stability
Symmetry and Gaps

Symmetries and Gaps in Nuclear Context: Summary

To increase the chances of having big gaps in the spectra we either
look for point groups with high dimension irreps or with many irreps
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Nucleonic Level Degeneracies

Symmetries of the Mean Field

SU    Group
(studied over the years)

Superdeformation

Td Oh

 future

below

Special Point−Groups
(studies at the beginning)

2. or with High−Dimension Irreps

1. Either with Many Irreps

3

Hyperdeformation

The above guide-lines (not theorems) are confirmed by calculations
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Mean Field with O and T Symmetries

Part II

Octahedral and Tetrahedral Nuclei

Jerzy DUDEK Tetrahedral and Octahedral Symmetries in Nuclei



Mean Field with O and T Symmetries
Octahedral Symmetry
Tetrahedral Symmetry

Introducing Nuclear Octahedral Symmetry

Let us recall one of the magic forms introduced long time by Plato.
The implied symmetry leads to the octahedral group denoted Oh

An octahedron has 8 equal walls. Its
shape is invariant with respect to 48
symmetry elements that include in-
version. However, the nuclear surface
cannot be represented in the form of
a diamond → → → → → → → →
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... but rather in a form of a regular spherical harmonic expansion:

R(ϑ, ϕ) = R0 c({α})[1 +
λmax∑

λ

λ∑
µ=−λ

αλ,µ Yλ,µ(ϑ, ϕ)]
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Mean Field with O and T Symmetries
Octahedral Symmetry
Tetrahedral Symmetry

A Basis for Octahedral Symmetry

Only special combinations of spherical harmonics may form a basis
for surfaces with octahedral symmetry:

Three Lowest Orders: Rank ↔ Multipolarity λ

λ = 4 : α40 ≡ o4; α4,±4 ≡ ±
√

5
14
· o4

λ = 6 : α60 ≡ o6; α6,±4 ≡ −
√

7
2
· o6

λ = 8 : α80 ≡ o8; α8,±4 ≡
√

28
198
· o8; α8,±8 ≡

√
65
198
· o8
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Mean Field with O and T Symmetries
Octahedral Symmetry
Tetrahedral Symmetry

Nuclear Octahedral Shapes - 3D Examples

Illustrations below show the octahedral-symmetric surfaces at three
increasing values of rank λ = 4 deformations o4: 0.1, 0.2 and 0.3:

Figure: o4 = 0.1 Figure: o4 = 0.2 Figure: o4 = 0.3

Recall: α40 ≡ o4; α4,±4 ≡ ±
√

5
14
· o4
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Mean Field with O and T Symmetries
Octahedral Symmetry
Tetrahedral Symmetry

Among the Highest Symmetries in Molecular Physics

Group Td - Molecule: [CH4] Group Oh - Molecule: [SF6]

Group D6d - Mol.: [Cr(C6H6)2] Group Ih - Molecule: [C60]

From J. Goss, University of Newcastle
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Mean Field with O and T Symmetries
Octahedral Symmetry
Tetrahedral Symmetry

Nuclear Octahedral Shapes - Neutron Spectra

Double group OD
h has four 2-dimensional and two 4-dimensional

irreducible representations → six distinct families of levels

-.35 -.25 -.15 -.05 .05 .15 .25 .35

-12

-10

-8

-6

-4

-2

Octahedral Deformation 

N
e
u

tr
o
n

 E
n

e
rg

ie
s 

[M
e
V

]

α 4
0
(m

in
)=

-.
3
5
0
, 

α 4
0
(m

a
x
)=

.3
5
0

α 4
4
(m

in
)=

-.
2
0
9
, 

α 4
4
(m

a
x
)=

.2
0
9

S
tr

a
sb

o
u

rg
, 
A

u
g
u

st
 2

0
0
2

D
ir

a
c-

W
o
o
d

s-
S

a
x
o
n

82

86

88
88

94 94

100

110

114 116

118
126

{21}[4,0,2] 3/2
{22}[4,4,0] 1/2
{12}[4,0,0] 1/2
{10}[5,2,3] 5/2
{21}[5,1,4] 7/2
{13}[5,0,5] 11/2
{12}[5,0,5] 11/2
{13}[5,2,1] 1/2
{07}[5,0,5] 11/2
{10}[5,3,0] 1/2
{09}[5,0,3] 7/2
{16}[5,4,1] 1/2
{11}[5,0,1] 3/2
{16}[6,2,4] 9/2
{07}[5,4,1] 3/2
{20}[6,1,5] 11/2
{19}[6,3,3] 7/2
{10}[5,4,1] 3/2
{21}[5,0,5] 9/2
{18}[6,1,5] 11/2
{08}[5,0,5] 9/2
{09}[6,4,2] 5/2
{17}[6,1,3] 7/2

{08}[5,4,1] 1/2
{08}[5,0,5] 11/2
{23}[4,2,2] 3/2
{13}[4,1,1] 1/2
{21}[4,1,3] 5/2

{08}[5,0,5] 9/2

{16}[5,1,4] 9/2
{14}[5,3,2] 5/2
{21}[5,2,3] 7/2
{08}[5,3,2] 5/2
{09}[6,0,4] 9/2
{08}[4,0,2] 5/2
{07}[8,8,0] 1/2
{11}[5,3,0] 1/2
{11}[5,2,1] 3/2
{12}[5,3,2] 3/2
{07}[5,1,4] 7/2

{17}[6,0,6] 13/2
{11}[6,5,1] 3/2
{10}[6,1,3] 7/2
{06}[8,0,2] 5/2
{07}[6,4,0] 1/2

{08}[6,0,6] 11/2

160Yb  90 70

Figure: Full lines correspond to 4-dimensional irreducible representations -
they are marked with double Nilsson labels. Observe huge gap at N=114.
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Mean Field with O and T Symmetries
Octahedral Symmetry
Tetrahedral Symmetry

Nuclear Octahedral Shapes - Proton Spectra

Double group OD
h has four 2-dimensional and two 4-dimensional

irreducible representations → six distinct families of levels
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Figure: Full lines correspond to 4-dimensional irreducible representations
- they are marked with double Nilsson labels. Observe huge gap at Z=70.
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Mean Field with O and T Symmetries
Octahedral Symmetry
Tetrahedral Symmetry

Discrete Symmetries in Nuclei

Let us recall one of the magic forms introduced long time by Plato.
The implied symmetry leads to the tetrahedral group denoted Td

A tetrahedron has four equal walls.
Its shape is invariant with respect to
24 symmetry elements. Tetrahedron
is not invariant with respect to the
inversion. Of course nuclei cannot be
represented by a sharp-edge pyramid

... but rather in a form of a regular spherical harmonic expansion:

R(ϑ, ϕ) = R0 c({α})[1 +
λmax∑

λ

λ∑
µ=−λ

αλ,µ Yλ,µ(ϑ, ϕ)]
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Mean Field with O and T Symmetries
Octahedral Symmetry
Tetrahedral Symmetry

Tetrahedral Symmetry in Heavy Zr Nuclei

The Table below shows the HFB energies relative to the energy of
the tetrahedral minimum. Calculations with SLy4 parametrisation.
Energy in MeV.

Nucleus 104Zr 106Zr 108Zr 110Zr 112Zr

Tetrahedral +0.00 +0.00 +0.00 +0.00 +0.00

Spherical +0.22 +0.29 +0.39 +0.43 +0.03

Oblate -1.57 -1.52 -1.10 +0.07 +0.30

Prolate -2.07 -1.76 -0.68 +0.27 +1.01

Conclusion: In some exotic nuclei the ground-state energies may
correspond to the tetrahedral minima
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Calculations for RE Nuclei

Part III

Tetrahedral Rare Earths - A Test-Ground
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Calculations for RE Nuclei
Total Energies
Experiment

Abundance of Tetrahedral Nuclei along Periodic Table

The tetrahedral/octahedral symmetric nuclei are predicted around
magic closures {Zt ,Nt} = {32, 40, 56, 64, 70, 90, 132− 136}

... and more precisely around the following nuclei:

64
32Ge32,

72
32Ge40,

88
32Ge56,

80
40Zr40,

110
40Zr70,

112
56Ba56,

126
56Ba70,

146
56Ba90,

134
64Gd70,

154
64Gd90,

160
70Yb90,

222
90Th132

The majority of these are either proton-rich or neutron-rich

An important exception is the God’s gift: Rare Earth Region
around Gd and Yb mass A∼150-160 nuclei

Therefore after having examined this ’easier’ range the majority
of the physics in question corresponds to the realm of Spiral 2
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of the physics in question corresponds to the realm of Spiral 2
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Calculations for RE Nuclei
Total Energies
Experiment

Tetrahedral vs. Ground-State Configurations

Tetrahedral minima compete with the prolate ground-state minima
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Figure: Barriers between the tetrahedral and quadrupole-deformed minima.
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Calculations for RE Nuclei
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Tetrahedral vs. Ground-State Configurations

Tetrahedral minima compete with the prolate ground-state minima
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Figure: Barriers between the tetrahedral and quadrupole-deformed minima.
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Calculations for RE Nuclei
Total Energies
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Tetrahedral vs. Ground-State Configurations

Tetrahedral minima compete with the prolate ground-state minima
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Figure: Barriers between the tetrahedral and quadrupole-deformed minima.
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Calculations for RE Nuclei
Total Energies
Experiment

Tetrahedral Shapes in Rare Earth Nuclei - Stability

The chances to observe the new symmetries in experiment increase
with the increasing heights of the barriers surrounding these minima

Figure: Barriers between the tetrahedral and quadrupole-deformed minima.
Brick size 100 keV; this corresponds to the highest barriers ∼2.5 MeV.

• Conclusion:The highest barriers correspond to the Gadolinum and
Ytterbium nuclei with N∼90.
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Tetrahedral Shapes in Rare Earth Nuclei - Stability

The chances to observe the new symmetries in experiment increase
with the increasing heights of the barriers surrounding these minima

Figure: Barriers between the tetrahedral and quadrupole-deformed minima.
Brick size 100 keV; this corresponds to the highest barriers ∼2.5 MeV.

• Conclusion:The highest barriers correspond to the Gadolinum and
Ytterbium nuclei with N∼90.
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Calculations for RE Nuclei
Total Energies
Experiment

Tetrahedral vs. Octahedral Symmetry: Big Gains

Tetrahedral and octahedral deformations combine lowering energies
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Figure: The octahedral deformation may provide down to 1 MeV extra.
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Tetrahedral vs. Octahedral Symmetry: Big Gains

Tetrahedral and octahedral deformations combine lowering energies

1

1

2

2 2

2
3

33

3

-0.3 -0.2 -0.1 0.0 0.1 0.2 0.3
-0.30

-0.20

-0.10

0.00

0.10

0.20

0.30

      Tetrahedral Symmetry / Instability

U
N

IV
E

R
S_

C
O

M
PA

C
T

 (
D

=
3,

 2
3)

U
N

IV
E

R
S_

C
O

M
PA

C
T

 (
D

=
3,

 2
3)

U
N

IV
E

R
S_

C
O

M
PA

C
T

 (
D

=
3,

 2
3)

Yb90 Yb160
 70

0.25
0.50
0.75
1.00
1.25
1.50
1.75
2.00
2.25
2.50
2.75
3.00
3.25
3.50
3.75
4.00
4.25
4.50
4.75
5.00
5.25
5.50
5.75
6.00

E [MeV]

Tetrahedral Deformation (Rank 1)

 O
ct

ah
ed

ra
l D

ef
. (

R
an

k 
1)

 Emin=-2.18, Eo= 0.40

Figure: The octahedral deformation may provide down to 1 MeV extra.
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Tetrahedral vs. Octahedral Symmetry: Big Gains

Tetrahedral and octahedral deformations combine lowering energies
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Figure: The octahedral deformation may provide down to 1 MeV extra.
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Calculations for RE Nuclei
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Tetrahedral vs. Octahedral Symmetry: Big Gains

Tetrahedral and octahedral deformations combine lowering energies
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Figure: The octahedral deformation may provide down to 1 MeV extra.
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Calculations for RE Nuclei
Total Energies
Experiment

Tetrahedral vs. Normal-Deformed Energy Differences

The chances to observe the new symmetries in experiment increase
with the decreasing energy difference: (Et − End)

Figure: Energy difference ∆E = (Et − End). Brick size 1 MeV.

• Conclusion:The best chances correspond to the N∼90-92 isotones.
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Tetrahedral vs. Normal-Deformed Energy Differences

The chances to observe the new symmetries in experiment increase
with the decreasing energy difference: (Et − End)

Figure: Energy difference ∆E = (Et − End). Brick size 1 MeV.

• Conclusion:The best chances correspond to the N∼90-92 isotones.
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Calculations for RE Nuclei
Total Energies
Experiment

About Enormous Instability of Spherical Shapes

Let us examine the energy gain in spherical nuclei by allowing them
to get tetrahedral and/or octahedral deformed

Figure: Energy difference ∆E ≡ (Esph − Et) between the spherical and
tetrahedral minima. Brick-size 500 keV.

• Conclusion:The majority of the Rare Earth area has ’unstable
sphericity’ ! In other words: tetrahedral/prolate coexisting minima.
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About Enormous Instability of Spherical Shapes

Let us examine the energy gain in spherical nuclei by allowing them
to get tetrahedral and/or octahedral deformed

Figure: Energy difference ∆E ≡ (Esph − Et) between the spherical and
tetrahedral minima. Brick-size 500 keV.

• Conclusion:The majority of the Rare Earth area has ’unstable
sphericity’ ! In other words: tetrahedral/prolate coexisting minima.
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Calculations for RE Nuclei
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Experiment

Tetrahedral/Octahedral Shapes Have No Q2-Moments

At the exact tetrahedral symmetry the quadrupole moments vanish.

Figure: Equilibrium shape t1 = 0.15.
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Tetrahedral/Octahedral Shapes Have No Q2-Moments

At the exact tetrahedral symmetry the quadrupole moments vanish.
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However, the induced dipole moments are calculated to be sizeable.
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Tetrahedral/Octahedral Shapes Have No Q2-Moments

At the exact tetrahedral symmetry the quadrupole moments vanish.
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However, the induced dipole moments are calculated to be sizeable.
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Calculations for RE Nuclei
Total Energies
Experiment

Comparison Theory - Experiment: Alignments

Three hypotheses: 1. Tetrahedral and Octahedral ↔ (microscopic);

2. Tetrahedral and Octahedral + Zero-Point Motion (αpol .
20 = 0.07);

3. Prolate (’standard’)
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Figure: Barriers between the tetrahedral and quadrupole-deformed min-
ima. Brick size 100 keV; this corresponds to the highest barriers ∼5 MeV.

Jerzy DUDEK Tetrahedral and Octahedral Symmetries in Nuclei



Calculations for RE Nuclei
Total Energies
Experiment

Comparison Theory - Experiment: B(E2)/B(E1)

Comparison between the mean-field predictions and experiment
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Figure: Barriers between the tetrahedral and quadrupole-deformed min-
ima. Brick size 100 keV; this corresponds to the highest barriers ∼5 MeV.
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Calculations for RE Nuclei
Total Energies
Experiment

Possible Further Signs of Tetrahedral Symmetry

Table: Experimental ratios B(E2)in/B(E1)out × 106

Spin 152Gd 156Gd 154Dy 160Er 164Er 162Yb 164Yb

19− - 50 - - - - -

17− - 16 - - - - -

15− - 6 - 60 24 - -

13− 14 7 15 18 23 - 17

11− 4 15 5 9 0 10 11

9− 4 0 - 0 - 11 10

7− 0 0 0 - - 0 0

Above: Branching ratios related to the negative parity bands
interpreted as tetrahedral, inter-band transitions to g.s.band
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Possible Further Signs of Tetrahedral Symmetry

Table: Experimental ratios B(E2)in/B(E1)out × 106

Spin 152Gd 156Gd 154Dy 160Er 164Er 162Yb 164Yb

19− - 50 - - - - -

17− - 16 - - - - -

15− - 6 - 60 24 - -

13− 14 7 15 18 23 - 17

11− 4 15 5 9 0 10 11

9− 4 0 - 0 - 11 10

7− 0 0 0 - - 0 0

Above: Branching ratios related to the negative parity bands
interpreted as tetrahedral, inter-band transitions to g.s.band
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Calculations for RE Nuclei
Total Energies
Experiment

Possible Experimental Signs of Tetrahedral Symmetry

Table: Experimental ratios B(E2)in/B(E1)out × 106

Spin 152Gd 156Gd 154Dy 160Er 164Er 162Yb 164Yb 222Th

19− - 50 - - - - - +0.3

17− - 16 - - - - - +0.4

15− - 6 - 60 24 - - +0.4

13− 14 7 15 18 23 - 17 +0.3

11− 4 15 5 9 0 10 11 +0.4

9− 4 0 - 0 - 11 10 +0.4

7− 0 0 0 - - 0 0 +0.4

Conclusion: The suspected bands in Rare Earth nuclei behave very
differently as compared e.g. to ’classical’ octupole 222Th band!
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Possible Experimental Signs of Tetrahedral Symmetry

Table: Experimental ratios B(E2)in/B(E1)out × 106

Spin 152Gd 156Gd 154Dy 160Er 164Er 162Yb 164Yb 222Th

19− - 50 - - - - - +0.3

17− - 16 - - - - - +0.4

15− - 6 - 60 24 - - +0.4

13− 14 7 15 18 23 - 17 +0.3

11− 4 15 5 9 0 10 11 +0.4

9− 4 0 - 0 - 11 10 +0.4

7− 0 0 0 - - 0 0 +0.4

Conclusion: The suspected bands in Rare Earth nuclei behave very
differently as compared e.g. to ’classical’ octupole 222Th band!
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Calculations for RE Nuclei
Total Energies
Experiment

Possible Experimental Signs of Tetrahedral Symmetry

Table: Experimental ratios B(E2)in/B(E1)out × 106

Spin 152Gd 156Gd 154Dy 160Er 164Er 162Yb 164Yb 82Zr

19− - 50 - - - - - -

17− - 16 - - - - - -

15− - 6 - 60 24 - - -

13− 14 7 15 18 23 - 17 -

11− 4 15 5 9 0 10 11 -

9− 4 0 - 0 - 11 10 52

7− 0 0 0 - - 0 0 4

Conclusion: The suspected bands in the predicted Zirconium
region seem to show a tendency similar to that in RE nuclei.
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Total Energies
Experiment

Possible Experimental Signs of Tetrahedral Symmetry

Table: Experimental ratios B(E2)in/B(E1)out × 106

Spin 152Gd 156Gd 154Dy 160Er 164Er 162Yb 164Yb 82Zr

19− - 50 - - - - - -

17− - 16 - - - - - -

15− - 6 - 60 24 - - -

13− 14 7 15 18 23 - 17 -

11− 4 15 5 9 0 10 11 -

9− 4 0 - 0 - 11 10 52

7− 0 0 0 - - 0 0 4

Conclusion: The suspected bands in the predicted Zirconium
region seem to show a tendency similar to that in RE nuclei.
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3D Diagrams

Part IV

Spatial Representation of Nuclear Shells
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3D Diagrams
Spherical Nuclei
Tetrahedral Nuclei

Spatial Structure of Orbitals (Spherical 132Sn) (|ψ(~r )| 2)

Limit 80% Limit ??% Limit ??% Limit ??% Limit ??%

Density distribution |ψπ(~r )| 2 ≥ Limit, for π = [2, 0, 2]1/2 orbital
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3D Diagrams
Spherical Nuclei
Tetrahedral Nuclei

Spatial Structure of Orbitals (Spherical 132Sn) (|ψ(~r )| 2)

Limit 80% Limit 50% Limit 10% Limit 3% Limit ??%

Density distribution |ψπ(~r )| 2 ≥ Limit, for π = [2, 0, 2]1/2 orbital
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3D Diagrams
Spherical Nuclei
Tetrahedral Nuclei

Spatial Structure of Orbitals (Spherical 132Sn) (|ψ(~r )| 2)

Limit 80% Limit 50% Limit 10% Limit 3% Limit 1%

Density distribution |ψπ(~r )| 2 ≥ Limit, for π = [2, 0, 2]1/2 orbital

Jerzy DUDEK Tetrahedral and Octahedral Symmetries in Nuclei



3D Diagrams
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Spatial Structure of Orbitals (Spherical 132Sn) (|ψ(~r )| 2)

Limit 80% Limit 50% Limit 10% Limit 3% Limit 1%

Limit 20% Limit ??% Limit ??% Limit ??% Limit ??%

Bottom: N=3 shell b-[303]7/2, w-[312]5/2, y-[321]3/2, p-[310]1/2
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Spatial Structure of Orbitals (Spherical 132Sn) (|ψ(~r )| 2)
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Limit 20% Limit 15% Limit 12% Limit ??% Limit ??%

Bottom: N=3 shell b-[303]7/2, w-[312]5/2, y-[321]3/2, p-[310]1/2
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3D Diagrams
Spherical Nuclei
Tetrahedral Nuclei

Spatial Structure of Orbitals (Spherical 132Sn) (|ψ(~r )| 2)

Limit 80% Limit 50% Limit 10% Limit 3% Limit 1%

Limit 20% Limit 15% Limit 12% Limit 10% Limit 9%

Bottom: N=3 shell b-[303]7/2, w-[312]5/2, y-[321]3/2, p-[310]1/2
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3D Diagrams
Spherical Nuclei
Tetrahedral Nuclei

Spatial Structure of N=3 Spherical Shell (|ψν(~r )| 2)

132Sn: Distributions |ψν(~r )| 2 for single proton orbitals. Top Oxz ,
bottom Oyz . Proton eν ↔ [ν=30, 32, ... 38] for spherical shell
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3D Diagrams
Spherical Nuclei
Tetrahedral Nuclei

Spatial Structure of N=3 Spherical Shell (|ψν(~r )| 2)

132Sn: Distributions |ψν(~r )| 2 for single proton orbitals. Top Oxz ,
bottom Oyz . Proton eν ↔ [ν=40, 42, ... 48] for spherical shell

Jerzy DUDEK Tetrahedral and Octahedral Symmetries in Nuclei



3D Diagrams
Spherical Nuclei
Tetrahedral Nuclei

Spatial Structure of N=3 Spherical Shell (|ψν(~r )| 2)

132Sn: distributions |ψν(~r )| 2 for consecutive pairs of orbitals. Top
Oxz , bottom Oyz . Proton eν ↔ [n=30:32, ... 38:40], spherical shell
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3D Diagrams
Spherical Nuclei
Tetrahedral Nuclei

Spatial Structure of N=3 Spherical Shell (|ψν(~r )| 2)

132Sn: distributions |ψν(~r )| 2 for consecutive pairs of orbitals. Top
Oxz , bottom Oyz . Proton eν ↔ [n=40:42, ... 48:50], spherical shell
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3D Diagrams
Spherical Nuclei
Tetrahedral Nuclei

The First Octahedral Shell (20 Nucleons)) (|ψ(~r )| 2)

Left: accumulating image of all orbitals; Right: Single Orbital (No.1)
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3D Diagrams
Spherical Nuclei
Tetrahedral Nuclei

The First Octahedral Shell (20 Nucleons)) (|ψ(~r )| 2)

Left: accumulating image of all orbitals; Right: Single Orbital (No.2)
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3D Diagrams
Spherical Nuclei
Tetrahedral Nuclei

The First Octahedral Shell (20 Nucleons)) (|ψ(~r )| 2)

Left: accumulating image of all orbitals; Right: Single Orbital (No.3)
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3D Diagrams
Spherical Nuclei
Tetrahedral Nuclei

The First Octahedral Shell (20 Nucleons)) (|ψ(~r )| 2)

Left: accumulating image of all orbitals; Right: Single Orbital (No.4)
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3D Diagrams
Spherical Nuclei
Tetrahedral Nuclei

The First Octahedral Shell (20 Nucleons)) (|ψ(~r )| 2)

Left: accumulating image of all orbitals; Right: Single Orbital (No.5)
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3D Diagrams
Spherical Nuclei
Tetrahedral Nuclei

The First Octahedral Shell (20 Nucleons)) (|ψ(~r )| 2)

Left: accumulating image of all orbitals; Right: Single Orbital (No.6)
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3D Diagrams
Spherical Nuclei
Tetrahedral Nuclei

The First Octahedral Shell (20 Nucleons)) (|ψ(~r )| 2)

Left: accumulating image of all orbitals; Right: Single Orbital (No.7)
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3D Diagrams
Spherical Nuclei
Tetrahedral Nuclei

The First Octahedral Shell (20 Nucleons)) (|ψ(~r )| 2)

Left: accumulating image of all orbitals; Right: Single Orbital (No.8)
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3D Diagrams
Spherical Nuclei
Tetrahedral Nuclei

The First Octahedral Shell (20 Nucleons)) (|ψ(~r )| 2)

Left: accumulating image of all orbitals; Right: Single Orbital (No.9)
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3D Diagrams
Spherical Nuclei
Tetrahedral Nuclei

The First Octahedral Shell (20 Nucleons)) (|ψ(~r )| 2)

Three space perspectives of the full octahedral shell (n=20 nucleons)
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Quantum Description of Rotation

Part V

Nuclear Quantum Rotor
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Quantum Description of Rotation
Energy Spectra
Electromagnetic Transitions

Quantum Systems and Rotation: Preliminaries [1]

Microscopic ’True’ H −> All Solutions
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Energy Spectra
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Quantum Systems and Rotation: Preliminaries [1]

Microscopic ’True’ H −> All Solutions

Alternative:

Mean Field H −> Individual Nucleons
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Quantum Description of Rotation
Energy Spectra
Electromagnetic Transitions

Quantum Systems and Rotation: Preliminaries [1]

Microscopic ’True’ H −> All Solutions

Alternative:

Mean Field H −> Individual Nucleons

Alternative:

Collective Rotor H −>  Rotational Bands
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Quantum Description of Rotation
Energy Spectra
Electromagnetic Transitions

Quantum Systems and Rotation: Preliminaries [2]

Collective Rotor Hamiltonian

.
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Quantum Description of Rotation
Energy Spectra
Electromagnetic Transitions

Quantum Systems and Rotation: Preliminaries [2]

Collective Rotor Hamiltonian

quant µλH       = H({ T      ( I    ,I    ,I  ) })−+ 0
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Quantum Description of Rotation
Energy Spectra
Electromagnetic Transitions

Quantum Systems and Rotation: Preliminaries [2]

Collective Rotor Hamiltonian

quant

H       = 1/2 class Σ
j
Σ
k

B
j k

x,p({     }) α k αV({         })
. .

;x,pα
j

+

µλH       = H({ T      ( I    ,I    ,I  ) })−+ 0
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Quantum Description of Rotation
Energy Spectra
Electromagnetic Transitions

Mean Field and Implied Rotor Symmetries

Suppose a system manifests a spontaneous symmetry breaking

We find it convenient to describe it with the help of Hmf ({6A})
We wish to stress rotational degrees of freedom by introducing

Heff ({6A}) = Hrot + Hmf ({6A})

Thus the symmetries of Heff ({6A}) and of Hmf ({6A}) coincide

Thus symmetries of Hrot and of Hmf ({6A}) should be the same

Jerzy DUDEK Tetrahedral and Octahedral Symmetries in Nuclei



Quantum Description of Rotation
Energy Spectra
Electromagnetic Transitions

Mean Field and Implied Rotor Symmetries

Suppose a system manifests a spontaneous symmetry breaking

We find it convenient to describe it with the help of Hmf ({6A})
We wish to stress rotational degrees of freedom by introducing

Heff ({6A}) = Hrot + Hmf ({6A})

Thus the symmetries of Heff ({6A}) and of Hmf ({6A}) coincide

Thus symmetries of Hrot and of Hmf ({6A}) should be the same

Jerzy DUDEK Tetrahedral and Octahedral Symmetries in Nuclei



Quantum Description of Rotation
Energy Spectra
Electromagnetic Transitions

Mean Field and Implied Rotor Symmetries

Suppose a system manifests a spontaneous symmetry breaking

We find it convenient to describe it with the help of Hmf ({6A})
We wish to stress rotational degrees of freedom by introducing

Heff ({6A}) = Hrot + Hmf ({6A})

Thus the symmetries of Heff ({6A}) and of Hmf ({6A}) coincide

Thus symmetries of Hrot and of Hmf ({6A}) should be the same

Jerzy DUDEK Tetrahedral and Octahedral Symmetries in Nuclei



Quantum Description of Rotation
Energy Spectra
Electromagnetic Transitions

Mean Field and Implied Rotor Symmetries

Suppose a system manifests a spontaneous symmetry breaking

We find it convenient to describe it with the help of Hmf ({6A})
We wish to stress rotational degrees of freedom by introducing

Heff ({6A}) = Hrot + Hmf ({6A})

Thus the symmetries of Heff ({6A}) and of Hmf ({6A}) coincide

Thus symmetries of Hrot and of Hmf ({6A}) should be the same

Jerzy DUDEK Tetrahedral and Octahedral Symmetries in Nuclei



Quantum Description of Rotation
Energy Spectra
Electromagnetic Transitions

Mean Field and Implied Rotor Symmetries

Suppose a system manifests a spontaneous symmetry breaking

We find it convenient to describe it with the help of Hmf ({6A})
We wish to stress rotational degrees of freedom by introducing
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Quantum Description of Rotation
Energy Spectra
Electromagnetic Transitions

What Must - and What Must Not be Attempted

The only direct observables are energy and angular momentum

Refusing:

No use of the classical concepts such as ’inertia’ or ’rigid body’

No use of derived concepts as VMI or Harris parametrisations

Accepting:

Nuclear modelling focuses on the mechanism under interest

- To study individual-nucleonic features → Basis of x̂k & p̂k

- For collective rotation → Basis of {Î+, Î−, Î0} & {α, β, γ}

Basis {Î+, Î−, Î0} : T̂λµ(n)
df .
= [(Î ⊗ Î )⊗ . . .⊗ Î ]λµ︸ ︷︷ ︸

n factors

Jerzy DUDEK Tetrahedral and Octahedral Symmetries in Nuclei



Quantum Description of Rotation
Energy Spectra
Electromagnetic Transitions

What Must - and What Must Not be Attempted

The only direct observables are energy and angular momentum

Refusing:

No use of the classical concepts such as ’inertia’ or ’rigid body’

No use of derived concepts as VMI or Harris parametrisations

Accepting:

Nuclear modelling focuses on the mechanism under interest

- To study individual-nucleonic features → Basis of x̂k & p̂k

- For collective rotation → Basis of {Î+, Î−, Î0} & {α, β, γ}
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Quantum Description of Rotation
Energy Spectra
Electromagnetic Transitions

Nuclear Rotor: Collective vs. Intrinsic Hamiltonians

One of the most successful models of nuclear structure is the
rotor model based on the Hamiltonian

Ĥ
[nucl .]

= Ĥ
[rot.]

+ Ĥ
[intr .]

+ Ĥ
[inter .]

Neglecting the interaction term as an approximation leads to

Φ[nucl .] = ψ[rot.] × χ[intr .] and E[nucl .] = E[rot.] + E[intr .]

Terms E[intr .] define the band-head energies
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Nuclear Rotor: Collective vs. Intrinsic Hamiltonians
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Quantum Description of Rotation
Energy Spectra
Electromagnetic Transitions

Nuclear Rotor: Collective vs. Intrinsic Hamiltonians

• To compare the rotor spectra with experiment, we must shift every
band upwards, introducing the band-head energies

Ibh= 0 Spin

E intr.

E
xc

it
at

io
n 

E
ne

rg
y

I  = 1
bh

I  = 2
bh

H = H     + H
rot intr

• Setting all band-head energies to zero we obtain the so-called
reduced form of rotor spectra allowing to discuss properties of Hrot.
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Nuclear Rotor: Collective vs. Intrinsic Hamiltonians

• To compare the rotor spectra with experiment, we must shift every
band upwards, introducing the band-head energies

Ibh= 0 Spin

E intr.

E
xc

it
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E
ne

rg
y

I  = 1
bh

I  = 2
bh

H = H     + H
rot intr

• Setting all band-head energies to zero we obtain the so-called
reduced form of rotor spectra allowing to discuss properties of Hrot.
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Quantum Description of Rotation
Energy Spectra
Electromagnetic Transitions

Ellipsoidal Rotor: Energy Spectrum at γ = 0o

To facilitate reading, the spectrum is normalised to the yrast line
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Quantum Description of Rotation
Energy Spectra
Electromagnetic Transitions

Ellipsoidal Rotor: Energy Spectrum at γ = 10o

To facilitate reading, the spectrum is normalised to the yrast line

Jerzy DUDEK Tetrahedral and Octahedral Symmetries in Nuclei



Quantum Description of Rotation
Energy Spectra
Electromagnetic Transitions

Ellipsoidal Rotor: Energy Spectrum at γ = 20o

To facilitate reading, the spectrum is normalised to the yrast line
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Quantum Description of Rotation
Energy Spectra
Electromagnetic Transitions

Ellipsoidal Rotor: Energy Spectrum at γ = 30o

To facilitate reading, the spectrum is normalised to the yrast line
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Quantum Description of Rotation
Energy Spectra
Electromagnetic Transitions

Ellipsoidal Rotor: Energy Spectrum at γ = 40o

To facilitate reading, the spectrum is normalised to the yrast line
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Quantum Description of Rotation
Energy Spectra
Electromagnetic Transitions

Ellipsoidal Rotor: Energy Spectrum at γ = 50o

To facilitate reading, the spectrum is normalised to the yrast line
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Quantum Description of Rotation
Energy Spectra
Electromagnetic Transitions

Ellipsoidal Rotor: Energy Spectrum at γ = 60o

To facilitate reading, the spectrum is normalised to the yrast line
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Quantum Description of Rotation
Energy Spectra
Electromagnetic Transitions

Stretched Qudrupole Transitions in the D2 Rotor

I=2

I=0

I=1

A1

A2A1

B3 B4

A1A2
B3 B4

B3 B4
A2A1

B3 B4

A1A2
B4B3

A1

A2

A1

B3 B4
A2

I=3

I=4

1.6

2.5

1
.2

[−
3

]

2.0

2.3

4
.7

[−
2

]

1
.0

[−
1

]

3
.2

[−
3

]

5
.0

[−
6

]

2
.4

[−
2

]

7
.5

[−
3

]

8.0[−4]3.4[−6]

Observe the domination of ∆I = 2 stretched E2→g.s. transitions
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Quantum Description of Rotation
Energy Spectra
Electromagnetic Transitions

Reduced Spectrum of the Tetrahedral-Symmetric Rotor

Spectrum is normalised to 99 % of the yrast line
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Quantum Description of Rotation
Energy Spectra
Electromagnetic Transitions

Electro-Magnetic E2 Transitions from I[9][C2]=4 State

Tetrahedral Symmetry (Decay Scheme)
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Stretched and non-stretched E2 transitions: observe retardation of
the C2→C2 transitions
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Quantum Description of Rotation
Energy Spectra
Electromagnetic Transitions

Electro-Magnetic E2 Transitions from I[5][C2] State

Tetrahedral Symmetry (Decay Scheme)
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Stretched and non-stretched E2 transitions: observed retarded C1→C1
transitions
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Quantum Description of Rotation
Energy Spectra
Electromagnetic Transitions
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Stretched and non-stretched E2 transitions: observed retarded C3→C3
transitions
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Observe the domination of Ci→C(k6=i) transitions and retardation
of the Ci→Ci type transitions
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Quantum Description of Rotation
Energy Spectra
Electromagnetic Transitions

Summarising the T-Group Selection Rules

We expect a competition between the minima of tetrahedral
and quadrupole-deformed (prolate and/or oblate) shapes

The decay patterns of the quadrupole bands are very neat;
stretched E2-transitions dominate ↔ a distinct feature

The tetrahedral minima are expected to be ’contaminated’ with
quadrupole deformation. Contamination with β ∼ 0.03 implies
already a significant E1-E2 competition

There is a degeneracy pattern different in the D2 and T-symmetry
cases: tetrahedral symmetry implies three-fold degeneracies
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Quantum Description of Rotation
Energy Spectra
Electromagnetic Transitions

E2 Selection - Detailed Predictions [2]

E2-transitions connect C1, C2 and C3 symmetry states among
themselves - and T1-symmetry states among themselves!

Quadrupole transitions of the type C1→C1, C2→C2 and C3→C3
are vanishing/negligible

Out of (2I + 1)in × (2I + 2)fin transitions a priori possible only
roughly 1/4 are clearly non-vanishing
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Quantum Description of Rotation
Energy Spectra
Electromagnetic Transitions

Statistical Wobbling in Space: Oh-Case
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Spin-Orientation Probability I=9, n=1, Representation A2
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Jerzy DUDEK Tetrahedral and Octahedral Symmetries in Nuclei



Quantum Description of Rotation
Energy Spectra
Electromagnetic Transitions

Statistical Wobbling in Space: Oh-Case

Spin-Orientation Probability

Z
=

64
,N

=
86

,J
x=

31
.9

,J
y=

31
.9

,J
z=

31
.9

;H
0P

.1
50

00
H

4P
.0

89
64

I=9, n=12; Erot=1.03351458801 (E)

-1

 0

 1
X -1

 0

 1

Y
-1

 0

 1

Z

Spin-Orientation Probability I=9, n=12, E (2-fold degenerate)
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Summary

Search for the high-rank symmetries in nuclei presents a genuinely
new physics challenge in nuclear structure domain for large facilities

1 Tetrahedral symmetry in nuclei is predicted as an abundant
phenomenon in numerous islands throughout the Periodic Table

2 Most of the nuclei in question are either neutron rich or proton
rich and thus of interest for exotic-nuclei projects

3 Paradoxally, the high-level symmetries have most likely been
seen already with ’old’ non-existing facilities - not realising it!

4 The tetrahedral Rare-Earth nuclei are about the only non-exotic
nuclei that can be studied with relatively modest facilities

5 The latter can be seen as a cadeau du ciel: allowing to learn
the new physics ’inexpensively’
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Perspectives: COLLABORATION ’TETRANUC’

A few points about the TETRANUC collaboration:

Goal: Demonstrate the existence and study the structure
of tetrahedral nuclei

at Ganil with Spiral 1 and 2

Laboratories today: Strasbourg, Ganil, Orsay, GSI-Darmstad,
Cracow, Legnaro, Madrid, Surrey and Warsaw

New members are very welcome!

Number of participants:
30 persons: 25 experimentalists and 5 theoreticians
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Most Urgent: First Proposals to Study Branching Ratios

A few points about the TETRANUC collaboration:

The LOGO (!) of the new collaboration
suggests our principal interest:

Find for the first time the experimental
evidence of the tetrahedral symmetry in
subatomic physics.

First proposals: To study the suspect
tetrahedral band in 156Gd. Using known
transition energies aim at as precise as
possible B(E2)/B(E1) ratios, also Q2. Figure: Logo by N. Dubray
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In Perspective:

1 From the basic physics point of view the tetrahedral symmetry
in sub-atomic physics seems comparably or more fundamental
and/or interesting than e.g. super-deformation

2 Measurements will involve:
a. Life-times (to establish weak quadrupole moments);
b. Electromagnetic transition ratios e.g. B(E2)/B(E1) ...

3 ... and nuclei placed around the tetrahedral magicity centres:

64
32Ge32,

72
32Ge40,

88
32Ge56,

80
40Zr40,

110
40Zr70,

112
56Ba56,

126
56Ba70,

146
56Ba90,

134
64Gd70,

154
64Gd90,

160
70Yb90,

222
90Th132

- in many cases the nuclei ’to the east’ and/or ’to the west’
from those centres
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