Search for shape coexistence in even-even stable molybdenum isotopes using Coulomb excitation method

Katarzyna Wrzosek

Heavy Ion Laboratory, Warsaw University

M. Zielińska, T. Czosnyka, J. Choiński, Y. Hatsukawa, J. Iwanicki, M. Kisieliński, M. Koizumi, M. Kowalczyk, H. Kusakari, M. Matsuda, T. Morikawa, P. J. Napiorkowski, A. Osa, M. Oshima,

L. Reissig, T. Shizuma, J. Srebrny, M. Sugawara, K. Zając

Motivation

- Shape coexistence in medium mass nuclei was extensively studied during recent years.
- One of the interesting phenomena associated with shape coexistence is the occurrence of low-lying 0⁺ states in even-even nuclei. In extreme cases the second 0⁺ state appears to be the first excited state.
- Among stable nuclei with Z > 20 only four of them have the 0⁺ first excited state, namely ⁷²Ge, ⁹⁰Zr, ⁹⁶Zr and ⁹⁸Mo.
- Coulomb excitation method allows to determine deformation parameters of an excited nucleus independently for each level.
- Shape parameters of the two lowest 0⁺ states in ⁹⁶Mo, ⁹⁸Mo, ¹⁰⁰Mo nuclei were inferred from Coulomb excitation data.

Coulomb excitation - basic facts

 Colliding nuclei do not interact via nuclear forces - if the distance between nuclear surfaces is at least 5 fm, the strong interaction can be neglected (Cline's empirical criterion).

- Trajectories of scattered nuclei are described classically.
- Energy transfer is small compared to the energy of the projectile.
- The excitation strength strongly depends on charges and masses of the collision partners, on beam energy and scattering angle.
- γ -radiation emitted by the Coulomb-excited nuclei carries the information on their internal structure.

Coulomb excitation set-ups

The data were collected using two detection set-ups:

• CUDAC (Coulex Universal Detector Array Chamber) at HIL (Poland).

- 30 particle detectors placed at backward angles.
- 3 γ -ray detectors.
- The deexcitation γ rays measured in coincidence with backscattered particles.

• GEMINI + LUNA detector array at JAERI (Tokai, Japan).

Experiments

 40 Ar + 96 Mo (HIL, Warsaw, Poland) 20 Ne + 96 Mo (HIL, Warsaw, Poland) 96 Mo + nat Pb (JAERI, Tokai, Japan)

Published:

M.Zielińska *et al.*, *Acta Phys. Pol.* B33, 515 (2002)
M.Zielińska *et al.*, *Nucl. Phys* A712, 79 (2002)
M.Zielińska *et al.*, *Acta Phys. Pol.* B36, 1289 (2005)
K. Zając, *Acta Phys. Pol.* B34 2241 (2003)
K. Zając, *Int. J. Mod. Phys.* E13 103 (2004)

²⁰Ne + ⁹⁸Mo (HIL, Warsaw, Poland)
 ⁸⁴Kr + ⁹⁸Mo (JAERI, Tokai, Japan)
 ¹³⁶Xe + ⁹⁸Mo (JAERI, Tokai, Japan)

Experiments

 40 Ar + 100 Mo (HIL, Warsaw, Poland) 20 Ne + 100 Mo (HIL, Warsaw, Poland)

Published:

K.Wrzosek et al., Int. J. Mod. Phys. E14 359 (2005)

Katarzyna Wrzosek

Matrix elements determination

Quadrupole Sum Rules method

... is based on a fact, that zero-coupled products of E2 operators are **rotational invariants**. Operator products may be expressed using the intermediate state expansion formula:

6⁺₁

2⁺ 2⁺ 2⁺

 0^{+}_{2}

 0_{1}^{+}

Quadrupole Sum Rules method

To get information on triaxiality the higher order invariant is needed:

$$\sqrt{\frac{2}{35}}Q^{3}\langle\cos 3\delta\rangle = \langle i | [E2 \times E2]_{2} \times E2]_{0} | i\rangle =$$
$$= \frac{1}{(2I_{i}+1)} \sum_{t,u} \langle i | | E2 | | u \rangle \langle u | | E2 | | t \rangle \langle t | | E2 | | i \rangle \left\{ \begin{array}{cc} 2 & 2 & 2 \\ I_{i} & I_{t} & I_{u} \end{array} \right\}$$

Shape coexistence

- ⁹⁶Mo: ground state 0⁺₁ is deformed while the excited state 0⁺₂ is almost spherical. This behaviour is similar to the one observed in Ge isotopes and ⁹⁶Zr.
- ⁹⁸Mo: the expectation value of Q² is almost the same for the ground state and for the first excited state.
- ¹⁰⁰Mo: the preliminary results show similar trend as observed in case of the ⁹⁸Mo isotope: the expectation value of Q² is almost the same for both 0⁺ states.
 Deformation of ¹⁰⁰Mo seems to be larger compared to other Mo isotopes.

Shape coexistence

The triaxiality seems to be the same for each of Ge isotopes. On the contrary, the ground state (0⁺₁) of ⁹⁸Mo is triaxial while the first excited state (0⁺₂) has a prolate shape.

Conclusions and future plans

- In case of ⁹⁶Mo and ⁹⁸Mo the resulting sets of matrix elements were rich and precise enough to determine shape parameters of the two 0⁺ states.
- Data collected during two experiments performed at HIL were not sufficient for the difficult case of ¹⁰⁰Mo, therefore the presented deformation parameters for 0⁺₁ and 0⁺₂ states are preliminary.
- One more experiment with ¹⁰⁰Mo target using the new gamma and particle detection set-up (12 γ -ray detectors and about 50 particle detectors) is planned at HIL in the near future.
- The simulations performed point out that all doubts should be dispelled. We expect to determine the diagonal matrix elements with a higher accuracy.