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Nuclear Mean-Field and Exotic Deformations
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Figure 1: Single particle gaps and total energies

Deformation-parameter axis

represents usually several

degrees of freedom. The

presence of the sufficiently

strong gaps may (but does not

need to) signify the onset of

the shape coexistence.

Here we will be interested in

special shell gaps: those cor-

responding to the exotic, high-

rank symmetries.

Looking for shell effects in possibly efficient way ... – p.4/47
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• Assume that G is the symmetry group of Ĥ
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• Consider Hamiltonian Ĥ = Ĥ(~r, ~p, ~s; α̂) with α̂ ≡ {αλ,µ}

• Consider a point-group G ≡ {Ô1, Ô2, . . . Ôf}.

• Assume that G is the symmetry group of Ĥ

[Ĥ, Ôk] = 0 with k = 1, 2, . . . f.

• Let irreps {R1,R2, . . .Rr} have dimensions { d1, d2, . . . dr }.

•Then the eigenvalues {εν} of the problem

Ĥψν = εν ψν

appear in multiplets: d1-fold degenerate, d2-fold degenerate, . . . etc.
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Introducing Octahedral Symmetry

• Octahedral symmetry is most commonly associated with a shape

of an octahedron (’diamond’).
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An octahedron has 8 equal walls. Its

shape is invariant with respect to 48

symmetry elements including inver-

sion. However, the nuclear surface

cannot be represented in the form of

a diamond...

• ... but rather in a form of a regular

expansion:

R(ϑ, ϕ) = R0c({α})[1+

λmax∑

λ

λ∑

µ=−λ

αλ,µ Yλ,µ(ϑ, ϕ)]

Octahedra: Infinite Number of Possible Tetrahedral Shapes –p.6/47



A Basis for Octahedral Symmetry

• Only special combinations of spherical harmonics may form a ba-

sis for surfaces with octahedral symmetry.
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A Basis for Octahedral Symmetry

• Only special combinations of spherical harmonics may form a ba-

sis for surfaces with octahedral symmetry.

• The first order is characterised by λ = 4 and we have

α40 ≡ o4; α4,±4 ≡ +
√

5
14

· o4

• The second order is characterised by λ = 6

α60 ≡ o6; α6,±4 ≡ −
√

7
2

· o6

• The third order is characterised by λ = 8

α80 ≡ o8; α8,±4 ≡
√

28
198

· o8; α8,±8 ≡
√

65
198

· o8
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Introducing Tetrahedral Symmetry

• Tetrahedral symmetry is most commonly associated with a shape

of a tetrahedron (’pyramid’ shape).

A tetrahedron has 4 equal walls. Its

shape is invariant with respect to 24

symmetry elements. Tetrahedron is

not invariant with respect to inver-

sion.

Tetrahedral Symmetry - Pyramids – p.8/47



Introducing Tetrahedral Symmetry

• Tetrahedral symmetry is most commonly associated with a shape

of a tetrahedron (’pyramid’ shape).

A tetrahedron has 4 equal walls. Its

shape is invariant with respect to 24

symmetry elements. Tetrahedron is

not invariant with respect to inver-

sion.

• The first order tetradral deformation is characterised by λ = 3 and

we have

α3,±2 ≡ t3

Tetrahedral Symmetry - Pyramids – p.8/47



A Basis for Tetrahedral Symmetry

• As for octahedral symmetry, only special combinations of spheri-

cal harmonics form a basis for surfaces with tetrahedral symmetry.

Tetrahedral Symmetry and Spherical Harmonics – p.9/47
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A Basis for Tetrahedral Symmetry

• As for octahedral symmetry, only special combinations of spheri-

cal harmonics form a basis for surfaces with tetrahedral symmetry.

• The first order is characterised by λ = 3 and we have

α3,±2 ≡ t3

• The second order is characterised only by λ = 7 (λ = 5 missing!)

α7,±2 ≡ t7 and α7,±6 ≡ −
√

11
13

· t7
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A Basis for Tetrahedral Symmetry

• As for octahedral symmetry, only special combinations of spheri-

cal harmonics form a basis for surfaces with tetrahedral symmetry.

• The first order is characterised by λ = 3 and we have

α3,±2 ≡ t3

• The second order is characterised only by λ = 7 (λ = 5 missing!)

α7,±2 ≡ t7 and α7,±6 ≡ −
√

11
13

· t7

• The third order is characterised by λ = 9

α9,±2 ≡ t9 and α9,±6 ≡ +
√

13
3

· t9
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Symmetry-Oriented Mean-Field Approach [1]

• Large scale Strutinsky calculations consist in ’tabulating’ the nu-

clear energies for a number of e.g. {αλµ} deformation parameters

• It is expected that, ’typically’, the higher the multipole the smaller

its energy effect

• We have suggested∗) replacing the multipole-basis expansions by

the symmetry-oriented basis expansions

• In case of high-rank symmetries (tetrahedral and octahedral ones)

four-fold degeneracies lead naturally to increased gaps in sp spectra

∗)Dudek, Góźdź, Schunck, Acta Phys. Polon. B34, 2491 (2003)
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Tetrahedral Symmetry - Surprises

• Usually it is expected that the higher the multipolarity of the defor-

mation the less important the energy contribution
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Figure 4: Total energy according to Universal-Compact parametrisation; Strutinsky and
Yukawa-Folded techniques. Neighbouring nuclei manifest similar features.
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Powerful Impact of the Symmetry-Oriented Bases

• Consider tetrahedral-symmetry shells driven by rank=7 shapes
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Powerful Impact of the Symmetry-Oriented Bases

• ... and compare them with the ’miserable quadrupole structures’:
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Extremely Profitable Symmetry-Explorations

• The shell and pairing (here PNP) effects are extremely strong:

80
40Zr40

-0.3 -0.2 -0.1 0.0 0.1 0.2 0.3

Tetrahedral Deformation [Rank=7]

-18

-16

-14

-12

-10

-8

-6

-4

-2

0

δ
E

sh
el

l
+

δ
E

P
N

P
co

rr
el
→

[Z
=

40
]

N=48
N=46
N=32
N=34
N=44
N=36

N=42
N=38

N=40

N=48
N=46
N=32
N=34
N=44
N=36

N=42
N=38

N=40

Deformed Woods-Saxon - Compact Universal Parameters

S
tr

as
b
ou

rg
T

h
eo

ry
G

ro
u
p

Powerful impact of the symmetry-oriented basis – p.14/47



Extremely Profitable Symmetry-Explorations

• The quantum effects must compete against the macroscopic ones:
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Extremely Profitable Symmetry-Explorations

• ... so that there remains a lot of room for a compromise:
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Underlying Shapes Are Exotic Indeed...

• Slightly exaggerated view of a t2 ∼ 0.16 nucleus: here t2 = 0.24

How exotic is exotic... – p.17/47



Symmetry-Oriented Mean-Field Approach [2]

• Consider a nuclear surface with a tetrahedral deformation:

Superposing tetrahedral and octahedral surfaces – p.18/47



Symmetry-Oriented Mean-Field Approach [2]

• ... and another nuclear surface with an octahedral deformation:

Superposing tetrahedral and octahedral surfaces – p.19/47



Symmetry-Oriented Mean-Field Approach [2]

• ... or even better, compare them directly ...

Superposing tetrahedral and octahedral surfaces – p.20/47



Symmetry-Oriented Mean-Field Approach [2]

• A superposition of appropriately oriented tetrahedral-symmetric

surface with an octahedral-symmetric surface is a tetrahedral-

symmetric surface

Superposing tetrahedral and octahedral surfaces – p.21/47



Tetrahedral Symmetry - Surprises

• Usually it is expected that the higher the multipolarity of deforma-

tion the less important the energy contribution

Combined Tetrahedral and Octahedral Degrees of Freedom – p.22/47



Tetrahedral Symmetry - Surprises

• Usually it is expected that the higher the multipolarity of deforma-

tion the less important the energy contribution
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Figure 5: Total energy according to Universal-Compact parametrisation; Strutinsky and
Yukawa-Folded techniques.
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Combined Tetrahedral and Octahedral Deformations

• Tetrahedral minima can be lowered by the octahedral deformations
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Figure 6: Octahedral deformation lowers the tetrahedral minimum by about 500 keV.
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Combined Tetrahedral and Octahedral Deformations

• Tetrahedral minima can be lowered by the octahedral deformations
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Figure 7: Octahedral deformation lowers the tetrahedral minimum by about 1.2 MeV.
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Tetrahedral Symmetry: In Which Nuclei?

• Using α32 deformation, tetrahedral magic gaps were predicted at:

Zt = 16, 20, 32, 40, 56, 70, 90, 100, 126
and

Nt = 16, 20, 32, 40, 56, 70, 90, 100, 136

i.e. while using the first order tetrahedral deformations only.
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Tetrahedral Symmetry: In Which Nuclei?

• Using α32 deformation, tetrahedral magic gaps were predicted at:

Zt = 16, 20, 32, 40, 56, 70, 90, 100, 126
and

Nt = 16, 20, 32, 40, 56, 70, 90, 100, 136

i.e. while using the first order tetrahedral deformations only.

• HOWEVER: It turns out that the presence of the higher order de-

formations may modify the optimal gap positions by ±2 units ...

• ... and by a few mass units in heavy and very heavy nuclei so that

e.g. Z = 70 → Z = 64; Z = N = 56 remain very weak, etc.

Tetrahedra: Where to Look For? – p.25/47
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It turns out that there exist very strong shell (magic) gaps in

the single-particle spectra corresponding to Tetrahedral/Octahedral
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Hidden Symmetries

It turns out that there exist very strong shell (magic) gaps in

the single-particle spectra corresponding to Tetrahedral/Octahedral

symmetries !

It follows that Tetrahedral/Octahedral magic gaps are comparable to

- or bigger than - several spherical magic gaps !!

Since nobody has ever looked for them so far - they remain hidden

(probably already in the existing data !!!)

For all these reasons we wish to introduce the name

κρυπτo-συµµετρια

OR: KRYPTO-SYMMETRY
Part I – p.26/47



Octahedral Symmetry - Realistic Spectra

• Example of the proton spectra with the Woods-Saxon potential.
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Octahedral Symmetry - Realistic Spectra

• Example of the proton spectra with the Woods-Saxon potential.
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Octahedral Symmetry - Realistic Spectra

• Example of the neutron spectra with the Woods-Saxon potential.
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{09}[6,4,2] 5/2
{17}[6,1,3] 7/2

{08}[5,4,1] 1/2
{08}[5,0,5] 11/2
{23}[4,2,2] 3/2
{13}[4,1,1] 1/2
{21}[4,1,3] 5/2

{08}[5,0,5] 9/2

{16}[5,1,4] 9/2
{14}[5,3,2] 5/2
{21}[5,2,3] 7/2
{08}[5,3,2] 5/2
{09}[6,0,4] 9/2
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{07}[8,8,0] 1/2
{11}[5,3,0] 1/2
{11}[5,2,1] 3/2
{12}[5,3,2] 3/2
{07}[5,1,4] 7/2

{17}[6,0,6] 13/2
{11}[6,5,1] 3/2
{10}[6,1,3] 7/2
{06}[8,0,2] 5/2
{07}[6,4,0] 1/2

{08}[6,0,6] 11/2

160Yb  90 70

Figure 3: Full lines correspond to 4-dimensional irreps - they are marked with double Nilsson
labels. There are six families of levels in total. Observe extremely large (over three MeV)
octahedral gap at N=114.
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High-Symmetries and Challenges

• There are several new physics aspects related to high symme-

tries: tetrahedral and octahedral ones.
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High-Symmetries and Challenges

• There are several new physics aspects related to high symme-

tries: tetrahedral and octahedral ones.

Table 1: CHALLENGES RELATED TO QUANTUM MECHANICS

(Unprecedented Quantum Features)

Properties High Symmetries ’Usual’ symmetries

or features Tetrahedral Octahedral Ellipsoid

No. Sym. Elemts. 48 96 4 + . . .

Parity NO YES YES

New Degeneracies 4, 2, 2 4,2,2
︸ ︷︷ ︸

π = +

4,2,2
︸ ︷︷ ︸

π = −

2
︸︷︷︸

π = +

2
︸︷︷︸

π = −

New Q. Numbers 3 3 + 3 2: π = ±1
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High-Symmetries and Challenges

• There are several new physics aspects related to high symme-

tries: tetrahedral and octahedral ones.

Table 1: CHALLENGES RELATED TO QUANTUM MECHANICS

(Unprecedented Quantum Features)

Properties High Symmetries ’Usual’ symmetries

or features Tetrahedral Octahedral Ellipsoid

No. Sym. Elemts. 48 96 4 + . . .

Parity NO YES YES

New Degeneracies 4, 2, 2 4,2,2
︸ ︷︷ ︸

π = +

4,2,2
︸ ︷︷ ︸

π = −

2
︸︷︷︸

π = +

2
︸︷︷︸

π = −

New Q. Numbers 3 3 + 3 2: π = ±1

We call these new quantum numbers τρ ι− τιµυκoσ (tri-timeric)

’possessing three values’
Challenges Related to High Symmetries – p.29/47



Very Heavy Nuclei

• An example of coexistence: Tetrahedral and Octahedral Symmetry
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Figure 8: Observe co-existence of formally 3-4 minima of pure-Td and pure-Oh symmetries.
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Towards Super-Heavy Nuclei

• An example of coexistence: Tetrahedral and Octahedral Symmetry
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Figure 9: Mixed Td and Oh susceptibility.
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Towards Super-Heavy Nuclei

• An example of coexistence: Tetrahedral and Octahedral Symmetry
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Figure 10: Mixed Td and Oh susceptibility.
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Towards Super-Heavy Nuclei

• An example of coexistence: Tetrahedral and Octahedral Symmetry
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Figure 11: Large amplitude octahedral oscillations?
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Towards Super-Heavy Nuclei

• An example of coexistence: ’Tetrahedral vs. Tetrahedral’ Symme-

try
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Figure 12: Formally 4 Td -symmetry minima... however ...
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Towards Super-Heavy Nuclei

• An example of shape coexistence in the presence of Tetrahedral

and Octahedral Symmetries
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Figure 13: One pure Oh -symmetry minimum, two minima with ’mixed’ Td - and Oh -
symmetries and a ’mixed area’.
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Towards Super-Heavy Nuclei

• An example of coexistence: Tetrahedral and Octahedral Symmetry
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Figure 14: One pure Oh -symmetry minimum, two minima with ’mixed’ Td - and Oh -
symmetries and a ’mixed area’.
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Towards Super-Heavy Nuclei

• An example of coexistence: Tetrahedral and Octahedral Symmetry
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Figure 15: A new type of transitional nuclear configurations.
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Towards Super-Heavy Nuclei

• An example of coexistence: Tetrahedral and Octahedral Symmetry
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Figure 16: Low energy octahedral vibrations?
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First Observations and Suggestions
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First Observations and Suggestions

• High-order tetrahedral deformations may cause effects stronger

than those of low-order tetrahedral deformations
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First Observations and Suggestions

• High-order tetrahedral deformations may cause effects stronger

than those of low-order tetrahedral deformations

• The tetrahedral energy minima can be numerous, contributed by

tetrahedral- and octahedral-type deformations
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First Observations and Suggestions

• High-order tetrahedral deformations may cause effects stronger

than those of low-order tetrahedral deformations

• The tetrahedral energy minima can be numerous, contributed by

tetrahedral- and octahedral-type deformations

• At zero quadrupole- (and other multipole-) deformations there is a

’new universe’ of tetrahedral-symmetric degrees of freedom
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First Observations and Suggestions

• High-order tetrahedral deformations may cause effects stronger

than those of low-order tetrahedral deformations

• The tetrahedral energy minima can be numerous, contributed by

tetrahedral- and octahedral-type deformations

• At zero quadrupole- (and other multipole-) deformations there is a

’new universe’ of tetrahedral-symmetric degrees of freedom

• A few degrees of freedom should be considered simultaneously in

the mesh-type mean-field calculations

Huge Subspace of Td-Compatible Deformations – p.39/47



Abundance Scheme for Tetrahedral Symmetry

• Synthetic representation for the compact universal parametrisation
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Abundance Scheme for Tetrahedral Symmetry

• Synthetic representation for the compact universal parametrisation

Figure 17: Observe the new optimal positions of the magic numbers: (Z=N=38), (Z=38,N=64),
(Z=64,N=98), (Z=98,N=136), (Z=98,N=172).
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Abundance Scheme for Tetrahedral Symmetry

• Synthetic representation for the compact universal parametrisation

Figure 18: Observe the new optimal positions of the magic numbers: (Z=N=38), (Z=38,N=64),
(Z=64,N=98), (Z=98,N=136), (Z=98,N=172).
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Remarks about Experimental Signatures [1]

• Single-particle energy levels belong to three irreducible represen-

tations, one of them four-dimensional.

53% [422]5/2
53% [413]7/265% [422]5/2

65% [404]9/2

73% [404]9/2

−65% [321]1/2
−65% [303]5/2

−73% [301]1/2

−69% [312]3/2

100 keV

100 keV

~3.2 MeV
Z=N=40

Degens.: 

16  16
 8    8
 8    8

Single−Particle Excitation Scheme around the Z=N=40 Gap

Figure 19: The percentages display the parity contents. In the nuclei with Z or N at, or around, 40 there
are numerous degenerate excitations to be expected, with the degeneracies ranging from 8 to 32 (!) in the
ideal symmetry cases.
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Remarks about Experimental Signatures [2]

• The strongest tetrahedral symmetry effects are expected at low

spins, at 1 to 3 MeV above the ground-states
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Figure 20: We would like to populate relatively highly-excited states at very low (or low) spins. Reactions
with light projectiles could be a choice here.
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Remarks about Experimental Signatures [3]

• Predicted isomeric minima are separated from the ground-state

minima by the barriers of a few hundreds of keV to a few MeV
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Figure 21: We expect the isomers of the structure that resemble that of the ’yrast traps’ in oblate nuclei.
Implication: a (model-dependent) test valid in nuclei that do not produce oblate minima!
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Remarks about Experimental Signatures [4]

• Consider very heavy and/or super-heavy nuclei

0 Deformation

E
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rg
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Figure 22: The stability against fission is modelled by a ’fission barrier’ usually understood in terms of the
quadrupole elongation.
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Comments about Stability against Fission

• In modelling the fission probability it is practical to use the collective

hamiltonian characterized by shape variables e.g. {αλµ}

• The determining factors for the process are: Potential energy

V ({α}) and the inertia tensor Bλµ;λ′µ′(α)

• In the one-dimensional approximation the fission life-time is in-

versely proportional to

τ−1
f ∼ Pfission ∼ exp

{

−

∫
√

2B(α)[V (α) − E]dα

}
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Comments about Stability against Fission

• In modelling the fission probability it is practical to use the collective

hamiltonian characterized by shape variables e.g. {αλµ}

• The determining factors for the process are: Potential energy

V ({α}) and the inertia tensor Bλµ;λ′µ′(α)

• In the one-dimensional approximation the fission life-time is in-

versely proportional to

τ−1
f ∼ Pfission ∼ exp

{

−

∫
√

2B(α)[V (α) − E]dα

}

• In qualitative terms, we have B ∼ 1/∆2 and B ∼ 〈 | ∂H
∂αλµ

| 〉
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Remarks about Experimental Signatures [5]

• The presence of the tetrahedral minima changes drastically the

accessible phase space of the problem:

Special
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Figure 23: In the case of the tetrahedral minimum there is the whole new area in the deformation space
that needs to be traversed towards fission.

Tetrahedral Symmetry - How to look for? – p.47/47


	TitlePage
	Collaborators
	Content
	Mean-Field
	PointGroups
	IntroOctahed
	Octa.vs.Ylm
	IntroTetrahed
	Tetra.vs.Ylm
	SymmOrientB
	TetraVsTetra
	TetraSeven1
	QuadruCompar
	TetraSeven
	TetraSeven
	TetraSeven
	ExampleT2
	SuperposTO1
	SuperposTO2
	SuperposTO2a
	SuperposTO3
	TetraVsTetra
	NonZeroOcta1
	NonZeroOcta1
	WhichNuclei
	WhyCrypto
	OctahedReaP
	OctahedReaN
	Challenges
	Heavy1-Z=102
	Heavy2-Z=102
	Heavy3-Z=102
	Heavy4-Z=102
	Heavy1a-Z=108
	Heavy1b-Z=108
	Heavy2-Z=108
	Heavy3-Z=108
	Heavy4-Z=108
	FirstRemarks
	Synthesis
	Synthesis2
	Experiment1
	Experiment2
	Experiment3
	Experiment4
	FissionDiffs
	Experiment5

