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Nuclear Mean-Field and Exotic Deformations

Deformation-parameter axis A Deformation Parameter
represents usually several :
degrees of freedom. The
presence of the sufficiently
strong gaps may (but does not
need to) signify the onset of

the shape coexistence. \ Nucleus' T’ Nucleus'2’
A

Nucleon Energies

Here we will be interested In
special shell gaps: those cor-
responding to the exotic, high- v —
rank symmetries. Defor mation Defor mation

Figure 1: Single particle gaps and total energies

Looking for shell effects in possibly efficient way ... — pl4/



Exotic Symmetries - High-Rank Point Groups
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Exotic Symmetries - High-Rank Point Groups

-_ A

Consider Hamiltonian ~ H = H(7, p, 5; &) with & = {a,,}

Consider a point-group G = {01,005, ...0+}.

Assume that G is the symmetry group of H

[H,0,] =0 with k=1,2, ...f.

Letirreps {R1,R2, ... R} have dimensions { dy,d2, ... d, }.

Then the eigenvalues {¢, } of the problem

appear in multiplets: d;-fold degenerate, d»-fold degenerate, ... etc.
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Introducing Octahedral Symmetry

Octahedral symmetry is most commonly associated with a shape
of an octahedron ('diamond’).

An octahedron has 8 equal walls. Its
shape is invariant with respect to 48
symmetry elements including inver-
sion. However, the nuclear surface
cannot be represented in the form of
a diamond...

... but rather in a form of a regular
expansion:

A’I’I"L(],CC

A
R(9,¢) = Roc{a)[1+ > > axpu Yau(®d,¢)]
A pu=—A

Octahedra: Infinite Number of Possible Tetrahedral Shape6/47



A Basis for Octahedral Symmetry

Only special combinations of spherical harmonics may form a ba-
sis for surfaces with octahedral symmetry.
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A Basis for Octahedral Symmetry

Only special combinations of spherical harmonics may form a ba-
sis for surfaces with octahedral symmetry.

The first order is characterised by A = 4 and we have

The second order is characterised by A = 6

Qg = Og; Og,+4 =

The third order is characterised by A\ = 8
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Introducing Tetrahedral Symmetry

Tetrahedral symmetry is most commonly associated with a shape
of a tetrahedron (’pyramid’ shape).

A tetrahedron has 4 equal walls. Its \
shape is invariant with respect to 24
symmetry elements. Tetrahedron is
not invariant with respect to inver-
sion.

N
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Introducing Tetrahedral Symmetry

Tetrahedral symmetry is most commonly associated with a shape
of a tetrahedron (’pyramid’ shape).

A tetrahedron has 4 equal walls. Its \
shape is invariant with respect to 24
symmetry elements. Tetrahedron is
not invariant with respect to inver-
sion.

N

The first order tetradral deformation is characterised by A = 3 and

we have
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A Basis for Tetrahedral Symmetry

As for octahedral symmetry, only special combinations of spheri-
cal harmonics form a basis for surfaces with tetrahedral symmetry.
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A Basis for Tetrahedral Symmetry

As for octahedral symmetry, only special combinations of spheri-
cal harmonics form a basis for surfaces with tetrahedral symmetry.

The first order is characterised by A = 3 and we have

The second order is characterised only by A = 7 (A = 5 missing!)

— — 11
7,42 = t7 and X746 = —\/ 72 ° t7
13
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A Basis for Tetrahedral Symmetry

As for octahedral symmetry, only special combinations of spheri-
cal harmonics form a basis for surfaces with tetrahedral symmetry.

The first order is characterised by A = 3 and we have

The second order is characterised only by A = 7 (A = 5 missing!)

11

ar 42 =ty and ar 46 = —4/75 - t7
13

The third order is characterised by A = 9

ag 42 =1tg and g 46 = + % :

Tetrahedral Symmetry and Spherical Harmonics — p.9/47



Symmetry-Oriented Mean-Field Approach [1]

Large scale Strutinsky calculations consist in 'tabulating’ the nu-
clear energies for a number of e.g. {a,. } deformation parameters
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Symmetry-Oriented Mean-Field Approach [1]

Large scale Strutinsky calculations consist in 'tabulating’ the nu-
clear energies for a number of e.g. {a.,. } deformation parameters

It is expected that, 'typically’, the higher the multipole the smaller
Its energy effect

We have suggested™ replacing the multipole-basis expansions by
the symmetry-oriented basis expansions

In case of high-rank symmetries (tetrahedral and octahedral ones)
four-fold degeneracies lead naturally to increased gaps in sp spectra

*)Dudek, G6zdz, Schunck, Acta Phys. Polon. B34, 2491 (2003)

Suggestion: Use the Symmetry Oriented Bases — p.10/47



Tetrahedral Symmetry - Surprises

Usually it is expected that the higher the multipolarity of the defor-

mation the less important the energy contribution
Tetrahedral Symmetry / Instability
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Figure 4: Total energy according to Universal-Compact parametrisation; Strutinsky and

Yukawa-Folded techniques. Neighbouring nuclei manifest similar features.
Tetrahedral Symmetry - Third and Seventh Rank — p.11/47



Powerful Impact of the Symmetry-Oriented Bases

Consider tetrahedral-symmetry shells driven by rank=7 shapes

Deformed Woods-Saxon - Compact Universal Parameters
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Powerful Impact of the Symmetry-Oriented Bases

... and compare them with the 'miserable quadrupole structures’:

Deformed Woods-Saxon - Compact Universal Parameters
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Extremely Profitable Symmetry-Explorations

The shell and pairing (here PNP) effects are extremely strong:

Deformed Woods-Saxon - Compact Universal Parameters
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Extremely Profitable Symmetry-Explorations

The quantum effects must compete against the macroscopic ones:

Macroscopic Energy
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Extremely Profitable Symmetry-Explorations

... SO that there remains a lot of room for a compromise:

Deformed Woods-Saxon - Compact Universal Parameters
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Underlying Shapes Are Exotic Indeed...

0.24

Slightly exaggerated view of a t3 ~ 0.16 nucleus: here t,

— p.17/47

otic...



Symmetry-Oriented Mean-Field Approach [2]

Consider a nuclear surface with a tetrahedral deformation:

Superposing tetrahedral and octahedral surfaces — p.18/47



Symmetry-Oriented Mean-Field Approach [2]

... and another nuclear surface with an octahedral deformation:

Superposing tetrahedral and octahedral surfaces — p.19/47



Symmetry-Oriented Mean-Field Approach [2]

or even better, compare them directly ...

- #\
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/|
JWAYA.
JVAVAY.
‘%WAV.
SWAVAY
g 7

Superposing tetrahedral and octahedral surfaces — p.20/47



Symmetry-Oriented Mean-Field Approach [2]

A superposition of appropriately oriented tetrahedral-symmetric
surface with an octahedral-symmetric surface is a tetrahedral-
symmetric surface

AVAVAVQL
L AvAvaNy,

\VAVAY,

J
Avaviy
1
ay

Superposing tetrahedral and octahedral surfaces — p.21/47



Tetrahedral Symmetry - Surprises

Usually it is expected that the higher the multipolarity of deforma-
tion the less important the energy contribution

Combined Tetrahedral and Octahedral Degrees of Freedo22443.



Tetrahedral Symmetry - Surprises

Usually it is expected that the higher the multipolarity of deforma-

tion the less important the energy contribution
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Combined Tetrahedral and Octahedral Deformations

Tetrahedral minima can be lowered by the octahedral deformations
Tetrahedral Symmetry / Instability
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Combined Tetrahedral and Octahedral Deformations

Tetrahedral minima can be lowered by the octahedral deformations
Tetrahedral Symmetry / Instability
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Figure 7: Octahedral deformation lowers the tetrahedral minimum by about 1.2 MeV.

Contributions from the Octahedral Deformations — p.24/47



Tetrahedral Symmetry: In Which Nuclei?

Using ag2 deformation, tetrahedral magic gaps were predicted at:

Z; = 16, 20, 32, 40, 56, 70, 90, 100, 126

and
N; = 16, 20, 32, 40, 56, 70, 90, 100, 136

l.e. while using the first order tetrahedral deformations only.
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Tetrahedral Symmetry: In Which Nuclei?

Using ag2 deformation, tetrahedral magic gaps were predicted at:

Z; = 16, 20, 32, 40, 56, 70, 90, 100, 126

and
N; = 16, 20, 32, 40, 56, 70, 90, 100, 136

l.e. while using the first order tetrahedral deformations only.

HOWEVER: It turns out that the presence of the higher order de-
formations may modify the optimal gap positions by 2 units ...

... and by a few mass units in heavy and very heavy nuclei so that
eg. Z =70 — Z = 64; Z = N = 56 remain very weak, etc.

Tetrahedra: Where to Look For? — p.25/47



Hidden Symmetries

Part | — p.26/47



Hidden Symmetries

It turns out that there exist very strong shell (magic) gaps in
the single-particle spectra corresponding to Tetrahedral/Octahedral
symmetries !

Part | — p.26/47



Hidden Symmetries

It turns out that there exist very strong shell (magic) gaps in
the single-particle spectra corresponding to Tetrahedral/Octahedral

symmetries !

It follows that Tetrahedral/Octahedral magic gaps are comparable to
- or bigger than - several spherical magic gaps !!

Part | — p.26/47



Hidden Symmetries

It turns out that there exist very strong shell (magic) gaps in
the single-particle spectra corresponding to Tetrahedral/Octahedral
symmetries !

It follows that Tetrahedral/Octahedral magic gaps are comparable to
- or bigger than - several spherical magic gaps !!

Since nobody has ever looked for them so far - they remain hidden
(probably already in the existing data !!!)

Part | — p.26/47



Hidden Symmetries

It turns out that there exist very strong shell (magic) gaps in
the single-particle spectra corresponding to Tetrahedral/Octahedral
symmetries !

It follows that Tetrahedral/Octahedral magic gaps are comparable to
- or bigger than - several spherical magic gaps !!

Since nobody has ever looked for them so far - they remain hidden
(probably already in the existing data !!!)

Part | — p.26/47



Hidden Symmetries

It turns out that there exist very strong shell (magic) gaps in
the single-particle spectra corresponding to Tetrahedral/Octahedral
symmetries !

It follows that Tetrahedral/Octahedral magic gaps are comparable to
- or bigger than - several spherical magic gaps !!

Since nobody has ever looked for them so far - they remain hidden
(probably already in the existing data !!!)

Part | — p.26/47



Octahedral Symmetry - Realistic Spectra

Example of the spectra with the Woods-Saxon potential.

Octahedral Symmetry - Examples of Realistic Spectra — p727/



Octahedral Symmetry - Realistic Spectra

Example of the
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octahedral gap at Z=70.
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Octahedral Symmetry - Realistic Spectra

Example of the spectra with the Woods-Saxon potential.
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Figure 3: Full lines correspond to 4-dimensional irreps - they are marked with double Nilsson
labels. There are six families of levels in total. Observe extremely large (over three MeV)

octahedral gap at N=114.
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High-Symmetries and Challenges

There are several new physics aspects related to high symme-
tries: tetrahedral and octahedral ones.
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Very Heavy Nuclel

An example of coexistence: Tetrahedral and Octahedral Symmetry
Tetrahedral Symmetry / Instability
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Figure 8: Observe co-existence of formally 3-4 minima of pure-T, and pure-Oy, symmetries.

Tetrahedral- and Octahedral-Shape Coexistence — p.30/47



Towards Super-Heavy Nuclel

An example of coexistence: Tetrahedral and Octahedral Symmetry
Tetrahedral Symmetry / Instability
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Figure 9: Mixed Ty and Oy, susceptibility.
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Towards Super-Heavy Nuclel

An example of coexistence: Tetrahedral and Octahedral Symmetry
Tetrahedral Symmetry / Instability
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Figure 10: Mixed Ty and Oy, susceptibility.

Tetrahedral/Octahedral Shape Transition — p.32/47



Towards Super-Heavy Nuclel

An example of coexistence: Tetrahedral and Octahedral Symmetry
Tetrahedral Symmetry / Instability
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Figure 11: Large amplitude octahedral oscillations?
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Towards Super-Heavy Nuclel

An example of coexistence: 'Tetrahedral vs. Tetrahedral’ Symme-

try
Tetrahedral Symmetry / Instability
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Figure 12: Formally 4 T-symmetry minima... however ...
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Towards Super-Heavy Nuclel

An example of shape coexistence in the presence of Tetrahedral

and Octahedral Symmetries
Tetrahedral Symmetry / Instability
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Figure 13: One pure Op-symmetry minimum, two minima with 'mixed’ Ty- and Oy, -

symmetries and a 'mixed area’.
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Towards Super-Heavy Nuclel

An example of coexistence: Tetrahedral and Octahedral Symmetry
Tetrahedral Symmetry / Instability
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Figure 14: One pure Op-symmetry minimum, two minima with 'mixed’ Ty- and Oy,-
symmetries and a 'mixed area’.
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Towards Super-Heavy Nuclel

An example of coexistence: Tetrahedral and Octahedral Symmetry
Tetrahedral Symmetry / Instability
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Figure 15: A new type of transitional nuclear configurations.

Tetrahedral-Shape Coexistence — p.37/47



Towards Super-Heavy Nuclel

An example of coexistence: Tetrahedral and Octahedral Symmetry
Tetrahedral Symmetry / Instability
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Figure 16: Low energy octahedral vibrations?

Tetrahedral-Shape Coexistence — p.38/47
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First Observations and Suggestions

High-order tetrahedral deformations may cause effects stronger
than those of low-order tetrahedral deformations

The tetrahedral energy minima can be numerous, contributed by
tetrahedral- and octahedral-type deformations

At zero quadrupole- (and other multipole-) deformations there is a
of tetrahedral-symmetric degrees of freedom

A few degrees of freedom should be considered simultaneously in
the mesh-type mean-field calculations

Huge Subspace of Td-Compatible Deformations — p.39/47



Abundance Scheme for Tetrahedral Symmetry

Synthetic representation for the compact universal parametrisation
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Abundance Scheme for Tetrahedral Symmetry

Synthetic representation for the compact universal parametrisation

dE=E(tet)-E(sph)

Compact WS.

Figure 17: Observe the new optimal positions of the magic numbers: (Z=N=38), (Z=38,N=64),
(Z=64,N=98), (Z=98,N=136), (Z=98,N=172).
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Abundance Scheme for Tetrahedral Symmetry

Synthetic representation for the compact universal parametrisation

dE=E(tet)-E(sph)
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Figure 18: Observe the new optimal positions of the magic numbers: (Z=N=38), (Z=38,N=64),
(Z=64,N=98), (Z=98,N=136), (Z=98,N=172).
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Remarks about Experimental Signatures [1]

Single-particle energy levels belong to three irreducible represen-
tations, one of them four-dimensional.

Single—Particle Excitation Scheme around the Z=N=40 Gap

L X N J
X N J

] 100 keV

[ X ]
[ X ]

Ty

Degens.:

/=N=40
g 8 ~3.2 MeV

— - _73% [301]1/2] 100 kev

Figure 19: The percentages display the parity contents. In the nuclei with Z or N at, or around, 40 there
are numerous degenerate excitations to be expected, with the degeneracies ranging from 8 to 32 (!) in the
ideal symmetry cases.
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Remarks about Experimental Signatures [2]

The strongest tetrahedral symmetry effects are expected at low
spins, at 1 to 3 MeV above the ground-states

l | >

10

Angular Momentum

Figure 20: We would like to populate relatively highly-excited states at very low (or low) spins. Reactions
with light projectiles could be a choice here.
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Remarks about Experimental Signatures [3]

Predicted isomeric minima are separated from the ground-state
minima by the barriers of a few hundreds of keV to a few MeV

Isomeric
States

Energy

Tetrahedral

Minimum Quadrupole
Minimum

Figure 21: We expect the isomers of the structure that resemble that of the ’yrast traps’ in oblate nuclei.
Implication: a (model-dependent) test valid in nuclei that do not produce oblate minima!

Tetrahedral Symmetry - How to look for? — p.44/47



Remarks about Experimental Signatures [4]

Consider very heavy and/or super-heavy nuclei

Energy

| | | | o
0 Deformation

Figure 22: The stability against fission is modelled by a "fission barrier’ usually understood in terms of the
guadrupole elongation.
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Comments about Stability against Fission

In modelling the fission probabillity it is practical to use the collective
hamiltonian characterized by shape variables e.g. {ax .}

The determining factors for the process are: Potential energy
V ({a}) and the inertia tensor By, » 7 ()

In the one-dimensional approximation the fission life-time Is in-
versely proportional to

77 ~ Prission ~ exp { = [ V2ZB(@)[V(a) — Blda

In qualitative terms, we have B ~ 1/A% and B ~ ( | an | )
7

oo

Factors determining the fission stability — p.46/47



Remarks about Experimental Signatures [5]

The presence of the tetrahedral minima changes drastically the
accessible phase space of the problem:

Energy

A

Tetrahedral Quadrupole

>

Regime Regime

Figure 23: In the case of the tetrahedral minimum there is the whole new area in the deformation space
that needs to be traversed towards fission.
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