NUCLEAR HIGH-RANK SYMMETRIES THROUGHOUT THE PERIODIC TABLE

Jerzy Dudek

Louis Pasteur University, Strasbourg I and
Institute of Subatomic Research - Strasbourg
FRANCE

COLLABORATORS

COLLABORATORS

Noel DUBRAY, ULP and IReS, Strasbourg, France Jacek DOBACZEWSKI, Warsaw University, Poland Stefan FRAUENDORF, U. of Notre Dame, IL, USA Andrzej GÓŹDŹ, University MC-S of Lublin, Poland Katarzyna MAZUREK, IFJ PAN Kraków, Poland Przemek OLBRATOWSKI, Warsaw University, PL Nicolas SCHUNCK, now at Madrid University, Spain

In the Program for Today:

High-Rank Point-Group Symmetries in Nuclei: a Summary

In the Program for Today:

- High-Rank Point-Group Symmetries in Nuclei: a Summary
- Large-Scale Nuclear Energy Calculations - a New Approach: Point-Group Symmetry-Oriented Construction of Mean Field

In the Program for Today:

o High-Rank Point-Group Symmetries in Nuclei: a Summary

- Large-Scale Nuclear Energy Calculations - a New Approach: Point-Group Symmetry-Oriented Construction of Mean Field
- Abundance of Tetrahedral Nuclei Throughout Periodic Table

In the Program for Today:

o High-Rank Point-Group Symmetries in Nuclei: a Summary

- Large-Scale Nuclear Energy Calculations - a New Approach: Point-Group Symmetry-Oriented Construction of Mean Field
- Abundance of Tetrahedral Nuclei Throughout Periodic Table
- New Universal Parametrisations of the Nuclear Mean-Fields

Nuclear Mean-Field and Exotic Deformations

Deformation-parameter axis represents usually several degrees of freedom. The presence of the sufficiently strong gaps may (but does not need to) signify the onset of the shape coexistence.

Here we will be interested in special shell gaps: those corresponding to the exotic, highrank symmetries.

Figure 1: Single particle gaps and total energies

Exotic Symmetries - High-Rank Point Groups

Consider Hamiltonian $\hat{\mathcal{H}}=\hat{\mathcal{H}}(\vec{r}, \vec{p}, \vec{s} ; \hat{\alpha})$ with $\hat{\alpha} \equiv\left\{\alpha_{\lambda, \mu}\right\}$

Exotic Symmetries - High-Rank Point Groups

Consider Hamiltonian $\quad \hat{\mathcal{H}}=\hat{\mathcal{H}}(\vec{r}, \vec{p}, \vec{s} ; \hat{\alpha})$ with $\hat{\alpha} \equiv\left\{\alpha_{\lambda, \mu}\right\}$
Consider a point-group $\mathcal{G} \equiv\left\{\hat{\mathcal{O}}_{1}, \hat{\mathcal{O}}_{2}, \ldots \hat{\mathcal{O}}_{f}\right\}$.

Exotic Symmetries - High-Rank Point Groups

- Consider Hamiltonian $\quad \hat{\mathcal{H}}=\hat{\mathcal{H}}(\vec{r}, \vec{p}, \vec{s} ; \hat{\alpha})$ with $\hat{\alpha} \equiv\left\{\alpha_{\lambda, \mu}\right\}$
- Consider a point-group $\mathcal{G} \equiv\left\{\hat{\mathcal{O}}_{1}, \hat{\mathcal{O}}_{2}, \ldots \hat{\mathcal{O}}_{f}\right\}$.

Assume that \mathcal{G} is the symmetry group of $\hat{\mathcal{H}}$

$$
\left[\hat{\mathcal{H}}, \hat{\mathcal{O}}_{k}\right]=0 \quad \text { with } \quad k=1,2, \ldots f .
$$

Exotic Symmetries - High-Rank Point Groups

- Consider Hamiltonian $\quad \hat{\mathcal{H}}=\hat{\mathcal{H}}(\vec{r}, \vec{p}, \vec{s} ; \hat{\alpha})$ with $\hat{\alpha} \equiv\left\{\alpha_{\lambda, \mu}\right\}$
- Consider a point-group $\mathcal{G} \equiv\left\{\hat{\mathcal{O}}_{1}, \hat{\mathcal{O}}_{2}, \ldots \hat{\mathcal{O}}_{f}\right\}$.
- Assume that \mathcal{G} is the symmetry group of $\hat{\mathcal{H}}$

$$
\left[\hat{\mathcal{H}}, \hat{\mathcal{O}}_{k}\right]=0 \quad \text { with } \quad k=1,2, \ldots f .
$$

Let irreps $\left\{\mathcal{R}_{1}, \mathcal{R}_{2}, \ldots \mathcal{R}_{r}\right\}$ have dimensions $\left\{d_{1}, d_{2}, \ldots d_{r}\right\}$.

Exotic Symmetries - High-Rank Point Groups

- Consider Hamiltonian $\quad \hat{\mathcal{H}}=\hat{\mathcal{H}}(\vec{r}, \vec{p}, \vec{s} ; \hat{\alpha})$ with $\hat{\alpha} \equiv\left\{\alpha_{\lambda, \mu}\right\}$
- Consider a point-group $\mathcal{G} \equiv\left\{\hat{\mathcal{O}}_{1}, \hat{\mathcal{O}}_{2}, \ldots \hat{\mathcal{O}}_{f}\right\}$.
- Assume that \mathcal{G} is the symmetry group of $\hat{\mathcal{H}}$

$$
\left[\hat{\mathcal{H}}, \hat{\mathcal{O}}_{k}\right]=0 \quad \text { with } \quad k=1,2, \ldots f .
$$

Let irreps $\left\{\mathcal{R}_{1}, \mathcal{R}_{2}, \ldots \mathcal{R}_{r}\right\}$ have dimensions $\left\{d_{1}, d_{2}, \ldots d_{r}\right\}$.
-Then the eigenvalues $\left\{\varepsilon_{\nu}\right\}$ of the problem

$$
\hat{\mathcal{H}} \psi_{\nu}=\varepsilon_{\nu} \psi_{\nu}
$$

Exotic Symmetries - High-Rank Point Groups

- Consider Hamiltonian $\quad \hat{\mathcal{H}}=\hat{\mathcal{H}}(\vec{r}, \vec{p}, \vec{s} ; \hat{\alpha})$ with $\hat{\alpha} \equiv\left\{\alpha_{\lambda, \mu}\right\}$
- Consider a point-group $\mathcal{G} \equiv\left\{\hat{\mathcal{O}}_{1}, \hat{\mathcal{O}}_{2}, \ldots \hat{\mathcal{O}}_{f}\right\}$.
- Assume that \mathcal{G} is the symmetry group of $\hat{\mathcal{H}}$

$$
\left[\hat{\mathcal{H}}, \hat{\mathcal{O}}_{k}\right]=0 \quad \text { with } \quad k=1,2, \ldots f .
$$

- Let irreps $\left\{\mathcal{R}_{1}, \mathcal{R}_{2}, \ldots \mathcal{R}_{r}\right\}$ have dimensions $\left\{d_{1}, d_{2}, \ldots d_{r}\right\}$.
-Then the eigenvalues $\left\{\varepsilon_{\nu}\right\}$ of the problem

$$
\hat{\mathcal{H}} \psi_{\nu}=\varepsilon_{\nu} \psi_{\nu}
$$

appear in multiplets: d_{1}-fold degenerate, d_{2}-fold degenerate,.. etc.

Introducing Octahedral Symmetry

- Octahedral symmetry is most commonly associated with a shape of an octahedron ('diamond').

An octahedron has 8 equal walls. Its shape is invariant with respect to 48 symmetry elements including inversion. However, the nuclear surface cannot be represented in the form of a diamond...

- ... but rather in a form of a regular expansion:

$$
\mathcal{R}(\vartheta, \varphi)=R_{0} c(\{\alpha\})\left[1+\sum_{\lambda}^{\lambda_{\max }} \sum_{\mu=-\lambda}^{\lambda} \alpha_{\lambda, \mu} Y_{\lambda, \mu}(\vartheta, \varphi)\right]
$$

A Basis for Octahedral Symmetry

- Only special combinations of spherical harmonics may form a basis for surfaces with octahedral symmetry.

A Basis for Octahedral Symmetry

- Only special combinations of spherical harmonics may form a basis for surfaces with octahedral symmetry.
- The first order is characterised by $\lambda=4$ and we have

$$
\alpha_{40} \equiv o_{4} ; \quad \alpha_{4, \pm 4} \equiv+\sqrt{\frac{5}{14}} \cdot o_{4}
$$

A Basis for Octahedral Symmetry

- Only special combinations of spherical harmonics may form a basis for surfaces with octahedral symmetry.
- The first order is characterised by $\lambda=4$ and we have

$$
\alpha_{40} \equiv o_{4} ; \quad \alpha_{4, \pm 4} \equiv+\sqrt{\frac{5}{14}} \cdot o_{4}
$$

- The second order is characterised by $\lambda=6$

$$
\alpha_{60} \equiv o_{6} ; \quad \alpha_{6, \pm 4} \equiv-\sqrt{\frac{7}{2}} \cdot o_{6}
$$

A Basis for Octahedral Symmetry

- Only special combinations of spherical harmonics may form a basis for surfaces with octahedral symmetry.
- The first order is characterised by $\lambda=4$ and we have

$$
\alpha_{40} \equiv o_{4} ; \quad \alpha_{4, \pm 4} \equiv+\sqrt{\frac{5}{14}} \cdot o_{4}
$$

- The second order is characterised by $\lambda=6$

$$
\alpha_{60} \equiv o_{6} ; \quad \alpha_{6, \pm 4} \equiv-\sqrt{\frac{7}{2}} \cdot o_{6}
$$

- The third order is characterised by $\lambda=8$

$$
\alpha_{80} \equiv o_{8} ; \quad \alpha_{8, \pm 4} \equiv \sqrt{\frac{28}{198}} \cdot o_{8} ; \quad \alpha_{8, \pm 8} \equiv \sqrt{\frac{65}{198}} \cdot o_{8}
$$

Introducing Tetrahedral Symmetry

- Tetrahedral symmetry is most commonly associated with a shape of a tetrahedron ('pyramid' shape).

A tetrahedron has 4 equal walls. Its shape is invariant with respect to 24 symmetry elements. Tetrahedron is not invariant with respect to inversion.

Introducing Tetrahedral Symmetry

Tetrahedral symmetry is most commonly associated with a shape of a tetrahedron ('pyramid' shape).

A tetrahedron has 4 equal walls. Its shape is invariant with respect to 24 symmetry elements. Tetrahedron is not invariant with respect to inversion.

- The first order tetradral deformation is characterised by $\lambda=3$ and we have

$$
\alpha_{3, \pm 2} \equiv t_{3}
$$

A Basis for Tetrahedral Symmetry

- As for octahedral symmetry, only special combinations of spherical harmonics form a basis for surfaces with tetrahedral symmetry.

A Basis for Tetrahedral Symmetry

As for octahedral symmetry, only special combinations of spherical harmonics form a basis for surfaces with tetrahedral symmetry.

- The first order is characterised by $\lambda=3$ and we have

$$
\alpha_{3, \pm 2} \equiv t_{3}
$$

A Basis for Tetrahedral Symmetry

As for octahedral symmetry, only special combinations of spherical harmonics form a basis for surfaces with tetrahedral symmetry.

- The first order is characterised by $\lambda=3$ and we have

$$
\alpha_{3, \pm 2} \equiv t_{3}
$$

The second order is characterised only by $\lambda=7$ ($\lambda=5$ missing!)

$$
\alpha_{7, \pm 2} \equiv t_{7} \quad \text { and } \quad \alpha_{7, \pm 6} \equiv-\sqrt{\frac{11}{13}} \cdot \mathrm{t}_{7}
$$

A Basis for Tetrahedral Symmetry

As for octahedral symmetry, only special combinations of spherical harmonics form a basis for surfaces with tetrahedral symmetry.

- The first order is characterised by $\lambda=3$ and we have

$$
\alpha_{3, \pm 2} \equiv t_{3}
$$

The second order is characterised only by $\lambda=7$ ($\lambda=5$ missing!)

$$
\alpha_{7, \pm 2} \equiv t_{7} \quad \text { and } \quad \alpha_{7, \pm 6} \equiv-\sqrt{\frac{11}{13}} \cdot \mathrm{t}_{7}
$$

- The third order is characterised by $\lambda=9$

$$
\alpha_{9, \pm 2} \equiv t_{9} \quad \text { and } \quad \alpha_{9, \pm 6} \equiv+\sqrt{\frac{13}{3}} \cdot \mathrm{t}_{9}
$$

Symmetry-Oriented Mean-Field Approach [1]

- Large scale Strutinsky calculations consist in 'tabulating' the nuclear energies for a number of e.g. $\left\{\alpha_{\lambda \mu}\right\}$ deformation parameters

Symmetry-Oriented Mean-Field Approach [1]

- Large scale Strutinsky calculations consist in 'tabulating' the nuclear energies for a number of e.g. $\left\{\alpha_{\lambda \mu}\right\}$ deformation parameters
- It is expected that, 'typically', the higher the multipole the smaller its energy effect

Symmetry-Oriented Mean-Field Approach [1]

- Large scale Strutinsky calculations consist in 'tabulating' the nuclear energies for a number of e.g. $\left\{\alpha_{\lambda \mu}\right\}$ deformation parameters
- It is expected that, 'typically', the higher the multipole the smaller its energy effect
- We have suggested*) replacing the multipole-basis expansions by the symmetry-oriented basis expansions

Symmetry-Oriented Mean-Field Approach [1]

- Large scale Strutinsky calculations consist in 'tabulating' the nuclear energies for a number of e.g. $\left\{\alpha_{\lambda \mu}\right\}$ deformation parameters
- It is expected that, 'typically', the higher the multipole the smaller its energy effect
- We have suggested*) replacing the multipole-basis expansions by the symmetry-oriented basis expansions
- In case of high-rank symmetries (tetrahedral and octahedral ones) four-fold degeneracies lead naturally to increased gaps in sp spectra

Symmetry-Oriented Mean-Field Approach [1]

- Large scale Strutinsky calculations consist in 'tabulating' the nuclear energies for a number of e.g. $\left\{\alpha_{\lambda \mu}\right\}$ deformation parameters
- It is expected that, 'typically', the higher the multipole the smaller its energy effect
- We have suggested*) replacing the multipole-basis expansions by the symmetry-oriented basis expansions
- In case of high-rank symmetries (tetrahedral and octahedral ones) four-fold degeneracies lead naturally to increased gaps in sp spectra
*) Dudek, Góźdź, Schunck, Acta Phys. Polon. B34, 2491 (2003)

Tetrahedral Symmetry - Surprises

- Usually it is expected that the higher the multipolarity of the deformation the less important the energy contribution

Tetrahedral Symmetry / Instability

${ }_{40}^{80} \mathrm{Zr}_{40} \quad$ Tetrahedral Deformation (Rank 1) $\underset{\text { Emin=-6.01, E0= }=0.16}{ }$
Figure 4: Total energy according to Universal-Compact parametrisation; Strutinsky and Yukawa-Folded techniques. Neighbouring nuclei manifest similar features.

Powerful Impact of the Symmetry-Oriented Bases

Consider tetrahedral-symmetry shells driven by rank=7 shapes

Powerful Impact of the Symmetry-Oriented Bases

... and compare them with the 'miserable quadrupole structures':
Deformed Woods-Saxon - Compact Universal Parameters

Extremely Profitable Symmetry-Explorations

The shell and pairing (here PNP) effects are extremely strong:
Deformed Woods-Saxon - Compact Universal Parameters

Extremely Profitable Symmetry-Explorations

The quantum effects must compete against the macroscopic ones:
Macroscopic Energy

Extremely Profitable Symmetry-Explorations

... so that there remains a lot of room for a compromise:
Deformed Woods-Saxon - Compact Universal Parameters

Underlying Shapes Are Exotic Indeed...

- Slightly exaggerated view of a $t_{2} \sim 0.16$ nucleus: here $t_{2}=0.24$

Symmetry-Oriented Mean-Field Approach [2]

- Consider a nuclear surface with a tetrahedral deformation:

Symmetry-Oriented Mean-Field Approach [2]

... and another nuclear surface with an octahedral deformation:

Symmetry-Oriented Mean-Field Approach [2]

... or even better, compare them directly ...

Symmetry-Oriented Mean-Field Approach [2]

- A superposition of appropriately oriented tetrahedral-symmetric surface with an octahedral-symmetric surface is a tetrahedralsymmetric surface

Tetrahedral Symmetry - Surprises

- Usually it is expected that the higher the multipolarity of deformation the less important the energy contribution

Tetrahedral Symmetry - Surprises

- Usually it is expected that the higher the multipolarity of deformation the less important the energy contribution

Figure 5: Total energy according to Universal-Compact parametrisation; Strutinsky and Yukawa-Folded techniques.

Combined Tetrahedral and Octahedral Deformations

- Tetrahedral minima can be lowered by the octahedral deformations

Figure 6: Octahedral deformation lowers the tetrahedral minimum by about 500 keV .

Combined Tetrahedral and Octahedral Deformations

- Tetrahedral minima can be lowered by the octahedral deformations

Figure 7: Octahedral deformation lowers the tetrahedral minimum by about 1.2 MeV.

Tetrahedral Symmetry: In Which Nuclei?

- Using α_{32} deformation, tetrahedral magic gaps were predicted at:

$$
Z_{t}=16,20,32,40,56,70,90,100,126
$$

and

$$
N_{t}=16,20,32,40,56,70,90,100,136
$$

i.e. while using the first order tetrahedral deformations only.

Tetrahedral Symmetry: In Which Nuclei?

- Using α_{32} deformation, tetrahedral magic gaps were predicted at:

$$
Z_{t}=16,20,32,40,56,70,90,100,126
$$

and

$$
N_{t}=16,20,32,40,56,70,90,100,136
$$

i.e. while using the first order tetrahedral deformations only.

- HOWEVER: It turns out that the presence of the higher order deformations may modify the optimal gap positions by ± 2 units ...

Tetrahedral Symmetry: In Which Nuclei?

- Using α_{32} deformation, tetrahedral magic gaps were predicted at:

$$
Z_{t}=16,20,32,40,56,70,90,100,126
$$

and

$$
N_{t}=16,20,32,40,56,70,90,100,136
$$

i.e. while using the first order tetrahedral deformations only.

- HOWEVER: It turns out that the presence of the higher order deformations may modify the optimal gap positions by ± 2 units ...
- ... and by a few mass units in heavy and very heavy nuclei so that e.g. $Z=70 \rightarrow Z=64 ; Z=N=56$ remain very weak, etc.

Hidden Symmetries

Hidden Symmetries

It turns out that there exist very strong shell (magic) gaps in the single-particle spectra corresponding to Tetrahedral/Octahedral symmetries!

Hidden Symmetries

It turns out that there exist very strong shell (magic) gaps in the single-particle spectra corresponding to Tetrahedral/Octahedral symmetries!

It follows that Tetrahedral/Octahedral magic gaps are comparable to

- or bigger than - several spherical magic gaps !!

Hidden Symmetries

It turns out that there exist very strong shell (magic) gaps in the single-particle spectra corresponding to Tetrahedral/Octahedral symmetries!

It follows that Tetrahedral/Octahedral magic gaps are comparable to

- or bigger than - several spherical magic gaps !!

Since nobody has ever looked for them so far - they remain hidden (probably already in the existing data !!!)

Hidden Symmetries

It turns out that there exist very strong shell (magic) gaps in the single-particle spectra corresponding to Tetrahedral/Octahedral symmetries!

It follows that Tetrahedral/Octahedral magic gaps are comparable to

- or bigger than - several spherical magic gaps !!

Since nobody has ever looked for them so far - they remain hidden (probably already in the existing data !!!)

For all these reasons we wish to introduce the name

```
\kappa\rhov\pi\tauO-\sigmav\mu\mu\in\tau \rho\iota\alpha
```


Hidden Symmetries

It turns out that there exist very strong shell (magic) gaps in the single-particle spectra corresponding to Tetrahedral/Octahedral symmetries!

It follows that Tetrahedral/Octahedral magic gaps are comparable to

- or bigger than - several spherical magic gaps !!

Since nobody has ever looked for them so far - they remain hidden (probably already in the existing data !!!)

For all these reasons we wish to introduce the name

```
\kappa\rhov\pi\tau o-\sigmav\mu\mu\epsilon\tau \rho\iota\alpha
```

OR: KRYPTO-SYMMETRY

Octahedral Symmetry - Realistic Spectra

Example of the proton spectra with the Woods-Saxon potential.

Octahedral Symmetry - Realistic Spectra

- Example of the proton spectra with the Woods-Saxon potential.

Figure 2: Full lines correspond to 4-dimensional irreps - they are marked with double Nilsson labels. There are six families of levels in total. Observe extremely large (over three MeV) octahedral gap at $Z=70$.

Octahedral Symmetry - Realistic Spectra

- Example of the neutron spectra with the Woods-Saxon potential.

Figure 3: Full lines correspond to 4-dimensional irreps - they are marked with double Nilsson labels. There are six families of levels in total. Observe extremely large (over three MeV) octahedral gap at $\mathrm{N}=114$.

High-Symmetries and Challenges

There are several new physics aspects related to high symmetries: tetrahedral and octahedral ones.

High-Symmetries and Challenges

- There are several new physics aspects related to high symmetries: tetrahedral and octahedral ones.

Table 1: CHALLENGES RELATED TO QUANTUM MECHANICS
(Unprecedented Quantum Features)

Properties	High Symmetries		'Usual' symmetries
or features	Tetrahedral	Octahedral	Ellipsoid
No. Sym. Elemts. Parity	$\begin{aligned} & \hline \hline 48 \\ & \mathrm{NO} \end{aligned}$	$\begin{gathered} \hline \hline 96 \\ \text { YES } \end{gathered}$	$\begin{gathered} 4+\ldots \\ \text { YES } \end{gathered}$
New Degeneracies New Q. Numbers	$4,2,2$ 3	$\begin{gathered} \underbrace{4,2,2}_{\pi=+} \underbrace{4,2,2}_{\pi=-} \\ 3+3 \end{gathered}$	$\begin{gathered} \underbrace{2}_{\pi=+}+\underbrace{2}_{\pi=-} \\ 2: \pi= \pm 1 \end{gathered}$

High-Symmetries and Challenges

- There are several new physics aspects related to high symmetries: tetrahedral and octahedral ones.

Table 1: CHALLENGES RELATED TO QUANTUM MECHANICS
(Unprecedented Quantum Features)

Properties	High Symmetries		'Usual' symmetries
or features	Tetrahedral	Octahedral	Ellipsoid
No. Sym. Elemts. Parity	$\begin{aligned} & \hline 48 \\ & \mathrm{NO} \end{aligned}$	$\begin{gathered} 96 \\ \text { YES } \end{gathered}$	$\begin{gathered} 4+\ldots \\ \text { YES } \end{gathered}$
New Degeneracies New Q. Numbers	$4,2,2$ 3	$\begin{gathered} \underbrace{4,2,2}_{\pi=+} \underbrace{4,2,2}_{\pi=-} \\ 3+3 \end{gathered}$	$\begin{gathered} \underbrace{2}_{\pi=+}+\underbrace{2}_{\pi=-} \\ 2: \pi= \pm 1 \end{gathered}$

We call these new quantum numbers $\tau \rho \iota-\tau \iota \mu v \kappa о \sigma$ (tri-timeric) 'possessing three values'

Very Heavy Nuclei

- An example of coexistence: Tetrahedral and Octahedral Symmetry Tetrahedral Symmetry / Instability

Figure 8: Observe co-existence of formally 3-4 minima of pure- $\boldsymbol{T}_{\boldsymbol{d}}$ and pure- O_{h} symmetries.

Towards Super-Heavy Nuclei

- An example of coexistence: Tetrahedral and Octahedral Symmetry

Tetrahedral Symmetry / Instability

Figure 9: Mixed T_{d} and O_{h} susceptibility.

Towards Super-Heavy Nuclei

- An example of coexistence: Tetrahedral and Octahedral Symmetry Tetrahedral Symmetry / Instability

Figure 10: Mixed T_{d} and O_{h} susceptibility.

Towards Super-Heavy Nuclei

- An example of coexistence: Tetrahedral and Octahedral Symmetry Tetrahedral Symmetry / Instability

Figure 11: Large amplitude octahedral oscillations?

Towards Super-Heavy Nuclei

- An example of coexistence: 'Tetrahedral vs. Tetrahedral' Symmetry

Figure 12: Formally $4 \boldsymbol{T}_{\boldsymbol{d}}$-symmetry minima... however ...

Towards Super-Heavy Nuclei

- An example of shape coexistence in the presence of Tetrahedral and Octahedral Symmetries

Tetrahedral Symmetry / Instability

Figure 13: One pure O_{h}-symmetry minimum, two minima with 'mixed' $T_{d^{-}}$and $O_{h^{-}}$symmetries and a 'mixed area'.

Towards Super-Heavy Nuclei

- An example of coexistence: Tetrahedral and Octahedral Symmetry Tetrahedral Symmetry / Instability

Figure 14: One pure O_{h}-symmetry minimum, two minima with 'mixed' $\boldsymbol{T}_{d^{-}}$and $O_{h^{-}}$ symmetries and a 'mixed area'.

Towards Super-Heavy Nuclei

- An example of coexistence: Tetrahedral and Octahedral Symmetry Tetrahedral Symmetry / Instability

Figure 15: A new type of transitional nuclear configurations.

Towards Super-Heavy Nuclei

- An example of coexistence: Tetrahedral and Octahedral Symmetry

Tetrahedral Symmetry / Instability

Figure 16: Low energy octahedral vibrations?

First Observations and Suggestions

First Observations and Suggestions

- High-order tetrahedral deformations may cause effects stronger than those of low-order tetrahedral deformations

First Observations and Suggestions

- High-order tetrahedral deformations may cause effects stronger than those of low-order tetrahedral deformations
- The tetrahedral energy minima can be numerous, contributed by tetrahedral- and octahedral-type deformations

First Observations and Suggestions

- High-order tetrahedral deformations may cause effects stronger than those of low-order tetrahedral deformations
- The tetrahedral energy minima can be numerous, contributed by tetrahedral- and octahedral-type deformations
- At zero quadrupole- (and other multipole-) deformations there is a
'new universe' of tetrahedral-symmetric degrees of freedom

First Observations and Suggestions

- High-order tetrahedral deformations may cause effects stronger than those of low-order tetrahedral deformations
- The tetrahedral energy minima can be numerous, contributed by tetrahedral- and octahedral-type deformations
- At zero quadrupole- (and other multipole-) deformations there is a 'new universe' of tetrahedral-symmetric degrees of freedom
- A few degrees of freedom should be considered simultaneously in the mesh-type mean-field calculations

Abundance Scheme for Tetrahedral Symmetry

- Synthetic representation for the compact universal parametrisation

Abundance Scheme for Tetrahedral Symmetry

- Synthetic representation for the compact universal parametrisation

$$
\mathrm{dE}=\mathrm{E}(\text { tet })-\mathrm{E}(\text { sph })
$$

Compact WS.

Figure 17: Observe the new optimal positions of the magic numbers: $(Z=N=38),(Z=38, N=64)$, (Z=64,N=98), (Z=98,N=136), (Z=98,N=172).

Abundance Scheme for Tetrahedral Symmetry

Synthetic representation for the compact universal parametrisation

$$
\mathrm{dE}=\mathrm{E} \text { (tet) }-\mathrm{E}(\text { sph })
$$

Figure 18: Observe the new optimal positions of the magic numbers: $(Z=N=38),(Z=38, N=64)$, ($Z=64, N=98),(Z=98, N=136),(Z=98, N=172)$.

Remarks about Experimental Signatures [1]

- Single-particle energy levels belong to three irreducible representations, one of them four-dimensional.

Figure 19: The percentages display the parity contents. In the nuclei with Z or N at, or around, 40 there are numerous degenerate excitations to be expected, with the degeneracies ranging from 8 to 32 (!) in the ideal symmetry cases.

Remarks about Experimental Signatures [2]

The strongest tetrahedral symmetry effects are expected at low spins, at 1 to 3 MeV above the ground-states

Figure 20: We would like to populate relatively highly-excited states at very low (or low) spins. Reactions with light projectiles could be a choice here.

Remarks about Experimental Signatures [3]

- Predicted isomeric minima are separated from the ground-state minima by the barriers of a few hundreds of keV to a few MeV

Figure 21: We expect the isomers of the structure that resemble that of the 'yrast traps' in oblate nuclei. Implication: a (model-dependent) test valid in nuclei that do not produce oblate minima!

Remarks about Experimental Signatures [4]

- Consider very heavy and/or super-heavy nuclei

Figure 22: The stability against fission is modelled by a 'fission barrier' usually understood in terms of the quadrupole elongation.

Comments about Stability against Fission

Comments about Stability against Fission

- In modelling the fission probability it is practical to use the collective hamiltonian characterized by shape variables e.g. $\left\{\alpha_{\lambda \mu}\right\}$

Comments about Stability against Fission

- In modelling the fission probability it is practical to use the collective hamiltonian characterized by shape variables e.g. $\left\{\alpha_{\lambda \mu}\right\}$

The determining factors for the process are: Potential energy
$V(\{\alpha\})$ and the inertia tensor $B_{\lambda \mu ; \lambda^{\prime} \mu^{\prime}}(\alpha)$

Comments about Stability against Fission

- In modelling the fission probability it is practical to use the collective hamiltonian characterized by shape variables e.g. $\left\{\alpha_{\lambda \mu}\right\}$
- The determining factors for the process are: Potential energy $V(\{\alpha\})$ and the inertia tensor $B_{\lambda \mu ; \lambda^{\prime} \mu^{\prime}}(\alpha)$
- In the one-dimensional approximation the fission life-time is inversely proportional to

$$
\tau_{f}^{-1} \sim P_{f i s s i o n} \sim \exp \left\{-\int \sqrt{2 B(\alpha)[V(\alpha)-E]} d \alpha\right\}
$$

Comments about Stability against Fission

- In modelling the fission probability it is practical to use the collective hamiltonian characterized by shape variables e.g. $\left\{\alpha_{\lambda \mu}\right\}$
- The determining factors for the process are: Potential energy $V(\{\alpha\})$ and the inertia tensor $B_{\lambda \mu ; \lambda^{\prime} \mu^{\prime}}(\alpha)$
- In the one-dimensional approximation the fission life-time is inversely proportional to

$$
\tau_{f}^{-1} \sim P_{f i s s i o n} \sim \exp \left\{-\int \sqrt{2 B(\alpha)[V(\alpha)-E]} d \alpha\right\}
$$

- In qualitative terms, we have $B \sim 1 / \Delta^{2}$ and $B \sim\langle | \frac{\partial H}{\partial \alpha_{\lambda \mu}}\rangle$

Remarks about Experimental Signatures [5]

The presence of the tetrahedral minima changes drastically the accessible phase space of the problem:

Figure 23: In the case of the tetrahedral minimum there is the whole new area in the deformation space that needs to be traversed towards fission.

